The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Trisekce úhlu

Z Multimediaexpo.cz

Trisekce úhlu je jeden ze tří nejslavnějších antických konstrukčních problémů (zbylé dva jsou kvadratura kruhu a duplikace krychle; souhrnně jsou nazývány Tři klasické problémy antické matematiky). Tyto úlohy byly formulovány již v 5. století př. n. l. a odolávaly po dlouhá staletí všem pokusům o vyřešení, než bylo v 19. století dokázáno, že jsou neřešitelné.

Obsah

Přesné zadání úlohy

Obecné zadání úlohy trisekce úhlu zní v jazyce moderní matematiky takto:

Nalezněte obecnou euklidovskou konstrukci, pomocí níž bude k libovolnému úhlu možné zkonstruovat úhel o třetinové velikosti.

Poněkud méně formálně:

Rozdělte daný úhel na tři stejně velké části pouze za užití pravítka a kružítka.

Historie

Již ve starověku a po celý středověk a renesanci se největší učenci své doby pokoušeli problém trisekce úhlu vyřešit. Až v roce 1830 dokázal mladý francouzský matematik Évariste Galois, že úlohu trisekce úhlu nelze pouze za použití pravítka a kružítka provést.

Důkaz neřešitelnosti

Důkaz nemožnosti provést požadovanou konstrukci sestává ze dvou nezávislých částí, z nichž první je obdobná pro důkazy neřešitelnosti všech tří klasických problémů:

  1. ověření, že lze zkonstruovat jen ty úhly, jejichž sinus i kosinus jsou algebraická čísla stupně (nad tělesem racionálních čísel) mocniny dvou
  2. nalezení úhlu, jehož kosinus není algebraické číslo stupně mocniny dvou, a jehož trojnásobek lze zkonstruovat

Tyto dva kroky nyní provedeme odděleně.

Konstruovatelné úhly

Za konstruovatelnou délku (resp. úhel, souřadnici) označíme takovou délku (resp. úhel, souřadnici), kterou lze zkonstruovat z dané jednotkové úsečky a daného počátku pouze pomocí pravítka a kružítka. Velmi snadno ověříme, že každá racionální délka (souřadnice) je konstruovatelná. Indukcí podle počtu kroků nejkratší konstrukce ověříme, že každá konstruovatelná souřadnice (jak x-ová, tak y-ová) je algebraické číslo stupně mocniny dvou. Nechť je tedy dána konstruovatelná souřadnice s a nechť

  • její nejkratší konstrukce (přesněji konstrukce bodu majícího tuto souřadnici) má 0 kroků
    • Pak s může být pouze souřadnice koncového bodu jednotkové úsečky nebo počátku (tj. s=1 nebo s=0), což je v obou případech algebraické číslo stupně 1=20.
  • její nejkratší konstrukce má n+1 kroků, přičemž víme, že všechny souřadnice, které lze zkonstruovat v méně než n+1 krocích, jsou algebraické stupně mocniny dvou
    • Proveďme nyní prvních n kroků oné n+1 krokové konstrukce souřadnice s. Označme T těleso generované všemi dosud zkonstruovanými souřadnicemi a jeho stupeň nad tělesem Q všech racionálních čísel (délek) označme [T:Q]. Protože T vzniklo postupným rozšiřováním Q o souřadnice konstruované v prvních n krocích, je [T:Q] mocnina dvou (snadnou aplikací indukčního předpokladu). Dále určíme stupeň [T[s]:T], kde T[s] je těleso generované prvky T a souřadnicí s. Víme (z definice T), že souřadnici s lze zkonstruovat v jediném kroku ze souřadnic obsažených v tělese T. Souřadnice s tedy může být souřadnicí bodu,
      • který již byl zkonstruován v prvních n krocích
        • Pak s je prvkem T a tedy [T[s]:T]=1.
      • který vznikl protnutím dvou úseček v (n+1)-ním kroku
        • Pak s je jednou ze složek řešení soustavy lineárních rovnic y=ax+b, y=cx+d, kde první a druhá rovnice popisují analyticky první a druhou z protínajících se úseček. Protože však krajní body těchto úseček byly zkonstruovány již v prvních n krocích, jsou jejich souřadnice a v důsledku i koeficienty a,b,c,d prvky T. Proto i obě složky řešení (x,y) jsou v T, a tedy opět [T[s]:T]=1.
      • který vznikl protnutím úsečky a kružnice v (n+1)-ním kroku
        • Pak s je jednou ze složek řešení lineárně kvadratické soustavy rovnic y=ax+b, (x-c)2+(y-d)2=r2, kde první (resp. druhá) rovnice popisuje analyticky úsečku (resp. kružnici). Opět - obdobně jako v předchozím bodě - jsou a,b,c,d prvky T, a protože čtverec vzdálenosti každých dvou bodů se souřadnicemi z T leží rovněž v T, je i r2 v T. Vyjádřením řešení (x,y) zjistíme, že obě jeho složky leží v tělese \(T[\sqrt{q}]\), kde q je vhodný prvek T. Protože zřejmě \([T[\sqrt{q}]:T]=1 \mbox{ nebo } 2\) a podle obecné teorie algebraických rozšíření dělí stupeň každého prvku rozšíření stupeň tohoto rozšíření, je nutně [T[s]:T]=1 nebo 2.
      • který vznikl protnutím dvou kružnic v (n+1)-ním kroku
        • Pak s je jednou ze složek řešení soustavy kvadratických rovnic (x-a)2+(y-b)2=r2, (x-c)2+(y-d)2=t2, kde první a druhá rovnicepopisují analyticky první a druhou z protínajících se kružnic. Opět jako v předchozích bodech jsou a,b,c,d,r,t prvky T. Opět vyjádřením řešení (x,y) zjistíme, že obě jeho složky leží v tělese \(T[\sqrt{q}]\), kde q je vhodný prvek T. Zcela stejně jako v předchozím bodě můžeme vidět, že [T[s]:T]=1 nebo 2.
    • Ve všech čtyřech popisovaných případech je tedy [T[s]:T]=1 nebo 2. Protože z předchozího víme, že [T:Q] je mocnina dvou, plyne z obecného algebraického tvrzení o multiplikativitě stupňů rozšíření, že [T[s]:Q]=[T[s]:T][T:Q] je rovněž mocnina dvou. Dále stupeň s nad Q je roven [T[s]:Q], tedy je také mocninou dvou, čímž je indukční krok dokončen.

Dále zřejmě každá konstruovatelná délka je vzdáleností dvou bodů s konstruovatelnými souřadnicemi, a tedy její čtverec je prvkem tělesa generovaného konečně mnoha konstruovatelnými souřadnicemi. Proto čtverec konstruovatelné vzdálenosti má stupeň mocniny dvou nad Q. Opět z věty o multiplikativitě stupňů rozšíření plyne, že i daná vzdálenost má stupeň mocniny dvou nad Q.

Konečně, zkonstruujeme-li úhel velikosti α, můžeme snadno zkonstruovat úsečky délky sin(α) i cos(α). Proto plyne z předchozího, že konstruovatelné jsou jen ty úhly, jejichž sinus i kosinus jsou algebraická čísla stupně mocniny dvou.

Úhel 20° (π/9) není konstruovatelný

Nyní již zbývá ukázat pouze existenci úhlu splňujícího, že kosinus jeho třetiny má stupeň různý od mocniny dvou a jeho trojnásobek je konstruovatelný (pak totiž nebudeme muset předpokládat, že je dán úhel, který máme rozdělit, což nám v první části důkazu umožnilo zjednodušit si situaci předpokladem, že dány jsou jen počátek a jednotková úsečka). Takovým úhlem je například 60° (π/3). Z obecné trigonometrické identity cos(3α) = 4cos³(α) − 3cos(α) plyne dosazením α=20° (α=π/9) (označíme-li y=cos(20°)=cos(π/9)) 8y³ − 6y − 1 = 0, odkud substitucí x=2y dostaneme 4x³ − 3x − 1 = 0. Pokud nyní stupeň x splňujícího předchozí rovnost nebude mocninou dvou, nebude mocninou dvou ani stupeň y, což chceme dokázat. Snadno nahlédneme, že polynom t³ − 3t − 1 je ireducibilní (kdyby nebyl, pak má faktor stupně jedna, a tedy racionální kořen, podle věty o racionálních kořenech (je-li p/q kořenem polynomu P s celočíselnými koeficienty a p je nesoudělné s q, pak q dělí vedoucí koeficient P a p jeho absolutní člen) je tento kořen jedno z čísel 1,-1, což evidentně není pravda). Minimálním polynomem x je tedy samotný polynom t³ − 3t − 1, a tedy x má stupeň tři, což není mocnina dvou. Tím je důkaz dokončen.

Související články