The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Aritmetická míra

Z Multimediaexpo.cz

Aritmetická míra, též čítací míra nebo počítací míra, je mírou používanou hlavně v diskrétních systémech. Neformálně je to funkce, která množině přiřazuje počet jejích prvků.

Definice

Mějme měřitelný prostor \((X, \mathcal{P}(X))\), kde \(X\) je libovolná množina a \(\mathcal{P}\) značí potenční množinu (\(\mathcal{P}(X)\) je speciální případ σ-algebry na \(X\)). Na takovém prostoru definujeme aritmetickou míru pro \(A \in \mathcal{P}(X)\) takto:

\(\alpha(A) = \begin{cases} |A| & \mbox{pokud A je konečná množina} \\ \infty & \mbox{pokud A není konečná} \end{cases}\)

Vztah sumy a integrálu

Aritmetická míra umožňuje zavést sumu jako speciální případ integrálu (Lebesgueova). Jelikož je každá podmnožina \(\mathbb{N}\) měřitelná, tak pro každou funkci (resp. posloupnost) \(g: \mathbb{N} \rightarrow \mathbb{C}\) platí:

\(\int_\mathbb{N} g \, \mathrm{d} \alpha = \sum_{n = 0}^{\infty} g(n)\) Je-li integrál definován.

Tento vztah je užitečný například při zavádění Lp prostoru na množině posloupností.

Externí odkazy