Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Kořen (matematika)
Z Multimediaexpo.cz
m (Nahrazení textu „</math>“ textem „\)</big>“) |
m (Nahrazení textu „\sgn“ textem „{\operatorname{sgn}}“) |
||
Řádka 15: | Řádka 15: | ||
==== Aproximací ==== | ==== Aproximací ==== | ||
- | Najdeme-li dva body <big>\(x_1\)</big> a <big>\(x_2\)</big>, pro které platí <big>\(\sgn(P(x_1)) = -\sgn(P(x_2))\)</big> kde <big>\(\sgn\)</big> značí znaménkovou funkci [[Funkce signum|signum]] (jinak řečeno <big>\(P(x_1)P(x_2)<0\)</big>), pak existuje alespoň jeden kořen v intervalu <big>\((x_1,x_2)\)</big> (viz [[Bolzanova věta]]). Tento kořen lze najít metodou [[půlení intervalů]] nebo [[Metoda tečen|metodou tečen]] | + | Najdeme-li dva body <big>\(x_1\)</big> a <big>\(x_2\)</big>, pro které platí <big>\({\operatorname{sgn}}(P(x_1)) = -{\operatorname{sgn}}(P(x_2))\)</big> kde <big>\({\operatorname{sgn}}\)</big> značí znaménkovou funkci [[Funkce signum|signum]] (jinak řečeno <big>\(P(x_1)P(x_2)<0\)</big>), pak existuje alespoň jeden kořen v intervalu <big>\((x_1,x_2)\)</big> (viz [[Bolzanova věta]]). Tento kořen lze najít metodou [[půlení intervalů]] nebo [[Metoda tečen|metodou tečen]] |
== Příklady == | == Příklady == |
Aktuální verze z 15. 8. 2022, 16:22
Kořenem funkce f se v matematice nazývá takový prvek a z definičního oboru f, v němž f nabývá nulové hodnoty.
Přesněji kořenem je každé a splňující rovnici f(a) = 0. Pro nejběžnější případ, kdy je definiční obor f podmnožinou komplexních resp. reálných čísel, je kořen bod, v němž graf funkce f protíná komplexní rovinu resp. osu x.
Obsah |
Kořen polynomu
Polynom jedné proměnné stupně n s komplexními koeficienty chápaný jako funkce může mít nejvýše n různých komplexních kořenů. Je-li totiž a kořenem polynomu P(x), pak (x − a) dělí P(x), a tedy P(x)/(x-a) je polynom stupně n-1.
Podle základní věty algebry má každý polynom jedné proměnné stupně n s komplexními koeficienty v komplexních číslech právě n kořenů, je-li každý počítán ve své násobnosti. Uvažujeme-li polynom nad reálnými čísly, pak tato situace nemusí obecně platit - např. polynom \(x^2+1\) nemá v reálných číslech kořen (kořeny polynomu jsou komplexní čísla \(\pm i\)).
Metody výpočtu
Přímo
- Je-li \(P(x)\) lineární polynom (tedy \(P(x) = ax + b\), kde \(a \neq 0\) a \(b\) jsou reálná nebo komplexní čísla), pak jeho kořenem je číslo \(x_0=-\frac{b}{a}\)
- Jde-li o kvadratický polynom (\(P(x) = ax^2 + bx + c\)), pak existují obecně dva kořeny \(x_{1,2} = \frac{-b \pm\sqrt{b^2 - 4ac}}{2a}\).
- Pro výpočet kořenů kubického polynomu existují např. Cardanovy vzorce.
Aproximací
Najdeme-li dva body \(x_1\) a \(x_2\), pro které platí \({\operatorname{sgn}}(P(x_1)) = -{\operatorname{sgn}}(P(x_2))\) kde \({\operatorname{sgn}}\) značí znaménkovou funkci signum (jinak řečeno \(P(x_1)P(x_2)<0\)), pak existuje alespoň jeden kořen v intervalu \((x_1,x_2)\) (viz Bolzanova věta). Tento kořen lze najít metodou půlení intervalů nebo metodou tečen
Příklady
- Kořenem funkce (polynomu) \(f(x) = x^2 + 6x + 9\) je číslo −3, protože f(-3) = 0.
Jiné kořeny tato funkce nemá – to se zjistí snadno rozkladem na \((x + 3)^2\). - Funkce \(f(x) = e^x\) (viz Eulerovo číslo) nemá v reálných ani komplexních číslech kořen.
- Funkce \(f(x) = sin (x)\) (viz sinus) má nekonečně mnoho kořenů, a to právě čísla tvaru kπ, kde π je Ludolfovo číslo a k libovolné celé číslo.
Související články
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |