Multimediaexpo.cz je již 18 let na českém internetu !!
Komplexní číslo
Z Multimediaexpo.cz
m (1 revizi) |
m (Nahrazení textu „</math>“ textem „\)</big>“) |
||
(Nejsou zobrazeny 2 mezilehlé verze.) | |||
Řádka 1: | Řádka 1: | ||
- | [[Soubor:Complex conjugate picture.png|thumb| | + | [[Soubor:Complex conjugate picture.png|thumb|200px|Znázornění komplexního čísla <big>\(z = x + iy\)</big> a čísla k němu [[komplexně sdružené číslo|komplexně sdruženého]] <big>\(\bar z = x - iy\)</big> v [[komplexní rovina|komplexní rovině]]. ''r'' je [[absolutní hodnota]] (norma).]] |
'''Komplexní čísla''' (z latinského ''complexus'', složený) vznikají rozšířením oboru [[reálné číslo|reálných čísel]] tak, aby v něm každá algebraická rovnice měla příslušný počet řešení podle [[Základní věta algebry|základní věty algebry]]. Například [[kvadratická rovnice]] ''x''<sup>2</sup> + 1 = 0 nemá v oboru reálných čísel řešení, protože její [[diskriminant]] (−4) je záporný a jeho odmocnina zde není definována. Komplexní číslo má dvě složky, reálnou a imaginární, a zapisuje se nejčastěji jako ''a'' + ''bi'', přičemž ''i'' znamená [[imaginární jednotka|imaginární jednotku]], definovanou vztahem ''i''<sup>2</sup> = −1. Zmíněná rovnice pak má dvě řešení, ± ''i''. Pro operace s komplexními čísly platí pravidla pro počítání s dvojčleny. | '''Komplexní čísla''' (z latinského ''complexus'', složený) vznikají rozšířením oboru [[reálné číslo|reálných čísel]] tak, aby v něm každá algebraická rovnice měla příslušný počet řešení podle [[Základní věta algebry|základní věty algebry]]. Například [[kvadratická rovnice]] ''x''<sup>2</sup> + 1 = 0 nemá v oboru reálných čísel řešení, protože její [[diskriminant]] (−4) je záporný a jeho odmocnina zde není definována. Komplexní číslo má dvě složky, reálnou a imaginární, a zapisuje se nejčastěji jako ''a'' + ''bi'', přičemž ''i'' znamená [[imaginární jednotka|imaginární jednotku]], definovanou vztahem ''i''<sup>2</sup> = −1. Zmíněná rovnice pak má dvě řešení, ± ''i''. Pro operace s komplexními čísly platí pravidla pro počítání s dvojčleny. | ||
Komplexní čísla lze interpretovat geometricky. Jako se reálná čísla zobrazují na reálné ose '''''Re''''', budou imaginární čísla zobrazena na kolmé imaginární ose '''''Im''''' a každé komplexní číslo se zobrazí jako bod v rovině se souřadnicemi [''x'', ''y'']. Číslo tvaru [''x'', 0] je reálné, číslo tvaru [0, ''y''] je ryze imaginární. Absolutní hodnota komplexního čísla je pak vzdálenost bodu [''x'', ''y''] od počátku souřadnic a číslo komplexně sdružené (tj. číslo [''x'', −''y'']) je zrcadlovým obrazem bodu [''x'', ''y''] podle reálné osy '''''Re'''''. | Komplexní čísla lze interpretovat geometricky. Jako se reálná čísla zobrazují na reálné ose '''''Re''''', budou imaginární čísla zobrazena na kolmé imaginární ose '''''Im''''' a každé komplexní číslo se zobrazí jako bod v rovině se souřadnicemi [''x'', ''y'']. Číslo tvaru [''x'', 0] je reálné, číslo tvaru [0, ''y''] je ryze imaginární. Absolutní hodnota komplexního čísla je pak vzdálenost bodu [''x'', ''y''] od počátku souřadnic a číslo komplexně sdružené (tj. číslo [''x'', −''y'']) je zrcadlovým obrazem bodu [''x'', ''y''] podle reálné osy '''''Re'''''. | ||
Komplexní čísla jsou významná nejen v matematice, ale také ve fyzice, zejména v elektrotechnice, v optice, v hydrodynamice i jinde. | Komplexní čísla jsou významná nejen v matematice, ale také ve fyzice, zejména v elektrotechnice, v optice, v hydrodynamice i jinde. | ||
== Zápis a související pojmy == | == Zápis a související pojmy == | ||
- | '''Komplexním číslem''' nazveme číslo tvaru < | + | '''Komplexním číslem''' nazveme číslo tvaru <big>\( a + bi \,\! \)</big>, kde <big>\( a \,\! \)</big> a <big>\( b \,\! \)</big> jsou [[Reálné číslo|reálná čísla]]. Tento tvar komplexního čísla se nazývá '''algebraický'''. Písmeno <big>\( i \,\! \)</big> značí '''imaginární jednotku''', která se formálně zavádí jako číslo splňující rovnici <big>\(i^2+1=0\,,\)</big> tj. jako [[odmocnina]] z −1, která v reálných číslech neexistuje. Elektrotechnici používají komplexní čísla velice často k výpočtu střídavých proudů obvodem, a protože přitom střídavý proud označují malým písmenem i, neoznačují imaginární jednotku písmenem i, ale písmenem j. |
- | Reálné číslo < | + | Reálné číslo <big>\( a \,\! \)</big> se nazývá '''reálnou částí''' tohoto komplexního čísla a číslo <big>\( b \,\! \)</big> jeho '''imaginární částí'''. Pokud je <big>\( b = 0 \,\! \)</big>, je dotyčné číslo reálným číslem <big>\( a \,\! \)</big>, tj. reálná čísla tvoří podmnožinu čísel komplexních. Pokud je <big>\( a = 0 \,\! \)</big>, mluvíme o '''ryze imaginárním číslu'''. |
=== Značení === | === Značení === | ||
- | Potřebujeme-li pracovat pouze s reálnou, resp. imaginární částí komplexního čísla < | + | Potřebujeme-li pracovat pouze s reálnou, resp. imaginární částí komplexního čísla <big>\(z \,\!\)</big>, používáme zápis |
- | < | + | <big>\(a = \mathrm{Re}(z) = \Re(z)\)</big>, |
- | < | + | <big>\(b = \mathrm{Im}(z) = \Im(z)\)</big>, |
- | kde < | + | kde <big>\(a,b \,\!\)</big> jsou reálná čísla. Komplexní číslo <big>\(z \,\!\)</big> lze tedy také vyjádřit některým z následujících zápisů <big>\(z = a + \mathrm{i}b = \mathrm{Re}(z) + \mathrm{i} \mathrm{Im}(z) = \Re(z) + \mathrm{i} \Im(z) \,\!\)</big>. |
S imaginární jednotkou se zachází jako s každým jiným číslem, proto je možné používat následujících zkrácených zápisů: | S imaginární jednotkou se zachází jako s každým jiným číslem, proto je možné používat následujících zkrácených zápisů: | ||
- | * < | + | * <big>\( 0 + x.i = x.i \,\! \)</big> |
- | * < | + | * <big>\( x + 0.i = x \,\! \)</big> |
- | * < | + | * <big>\( 1.i = i \,\! \)</big> |
- | * < | + | * <big>\( -1.i = -i \,\! \)</big> |
=== Příklad === | === Příklad === | ||
- | Číslo < | + | Číslo <big>\( z = 3 + 2i \,\! \)</big> má reálnou část <big>\( \mathrm{Re}(z) = 3 \,\!\)</big> a imaginární část <big>\( \mathrm{Im}(z) = 2 \,\!\)</big>. Nejedná se ani o reálné, ani o ryze imaginární číslo. |
== Důvody pro zavedení komplexních čísel == | == Důvody pro zavedení komplexních čísel == | ||
Už perský matematik [[Al-Khwarizmi]] (asi 820) si všiml, že některé kvadratické rovnice nemají řešení. Italský matematik [[Girolamo Cardano]] (1501-1576) ukázal, že by stačilo vhodně definovat odmocninu záporného čísla, a [[René Descartes]] zavedl 1637 označení reálné a imaginární číslo. Zajímavé výsledky zkoumání těchto „neskutečných“ čísel ukázal [[Leonhard Euler]] a komplexní čísla přesně zavedl francouzský matematik [[Augustin Louis Cauchy]] (1821) a nezávisle na něm [[Carl Friedrich Gauss]] (1831). | Už perský matematik [[Al-Khwarizmi]] (asi 820) si všiml, že některé kvadratické rovnice nemají řešení. Italský matematik [[Girolamo Cardano]] (1501-1576) ukázal, že by stačilo vhodně definovat odmocninu záporného čísla, a [[René Descartes]] zavedl 1637 označení reálné a imaginární číslo. Zajímavé výsledky zkoumání těchto „neskutečných“ čísel ukázal [[Leonhard Euler]] a komplexní čísla přesně zavedl francouzský matematik [[Augustin Louis Cauchy]] (1821) a nezávisle na něm [[Carl Friedrich Gauss]] (1831). | ||
Řádka 24: | Řádka 24: | ||
Obor komplexních čísel je uzavřený nejen na výše uvedené kořeny polynomů s reálnými koeficienty, ale i na kořeny polynomů s komplexními koeficienty. Tuto uzavřenost zaručuje [[Základní věta algebry]], která tvrdí, že polynom ''n''-tého stupně má v oboru komplexních čísel n kořenů. | Obor komplexních čísel je uzavřený nejen na výše uvedené kořeny polynomů s reálnými koeficienty, ale i na kořeny polynomů s komplexními koeficienty. Tuto uzavřenost zaručuje [[Základní věta algebry]], která tvrdí, že polynom ''n''-tého stupně má v oboru komplexních čísel n kořenů. | ||
=== Příklad === | === Příklad === | ||
- | Polynom < | + | Polynom <big>\( x^2 + 1 \,\! \)</big> nemá v oboru reálných čísel žádný kořen. V oboru komplexních čísel jsou jeho kořeny čísla <big>\( i \,\! \)</big> a <big>\( -i \,\! \)</big>, protože: |
- | * < | + | * <big>\( i^2 + 1 = -1 + 1 = 0 \,\! \)</big> |
- | * < | + | * <big>\( (-i)^2 + 1 = -1 + 1 = 0 \,\! \)</big> |
== Operace s komplexními čísly == | == Operace s komplexními čísly == | ||
=== Algebraický tvar komplexních čísel === | === Algebraický tvar komplexních čísel === | ||
Pro čísla v algebraickém tvaru lze jednoduchými algebraickými úpravami odvodit vztahy pro [[součet]], [[rozdíl]] a [[součin]] dvou komplexních čísel: | Pro čísla v algebraickém tvaru lze jednoduchými algebraickými úpravami odvodit vztahy pro [[součet]], [[rozdíl]] a [[součin]] dvou komplexních čísel: | ||
- | * < | + | * <big>\((a+ib)+(c+id)=(a+c)+i(b+d) \,\! \)</big> |
- | * < | + | * <big>\((a+ib)-(c+id)=(a-c)+i(b-d) \,\! \)</big> |
- | * < | + | * <big>\((a+ib)\cdot(c+id)=(ac-bd)+i(ad + bc) \,\! \)</big> |
[[Podíl]] dvou komplexních čísel lze vyjádřit takto: | [[Podíl]] dvou komplexních čísel lze vyjádřit takto: | ||
- | * < | + | * <big>\( {a + ib \over c + id} = {(a + ib) (c - id) \over (c + i d) (c - i d)} = {(ac+bd) + i (bc-ad) \over c^2 + d^2} = \left({a c + b d \over c^2 + d^2}\right) + i \left( {b c - a d \over c^2 + d^2} \right). \)</big> |
- | Pro komplexní číslo < | + | Pro komplexní číslo <big>\(z=a+bi\)</big> je definována '''konjugace''' ([[komplexně sdružené číslo]]) <big>\(\bar{z}:=a-bi\)</big>. Jejich součin <big>\(z\bar{z}=a^2+b^2\)</big> je vždy reálný a nezáporný a je roven nule pouze když <big>\(z=0\)</big>. Pak můžeme psát pro inverzi stručně <big>\(z^{-1}=\bar{z}/(z\bar{z})\)</big> pro <big>\(z\neq 0\)</big>. |
- | '''Norma''' komplexního čísla < | + | '''Norma''' komplexního čísla <big>\(z\)</big> je definována jako <big>\(|z|:=\sqrt{z\bar{z}}\)</big>. Platí, že pro libovolná komplexní čísla <big>\(z,w\)</big> je <big>\(|zw|=|z||w|\)</big>, t.j. norma součinu je součin norem. |
=== Geometrické znázornění komplexních čísel === | === Geometrické znázornění komplexních čísel === | ||
Komplexní čísla se zobrazují v komplexní (Gaussově) rovině jako [[bod]]y se souřadnicemi ''x,y''; ''x'' je reálná část komplexního čísla, ''y'' imaginární část. Na [[osa|ose]] ''x'' leží reálná čísla, ose ''y'' ryze imaginární čísla. Kombinací těchto dvou složek (reálné a imaginární) dostaneme množinu všech komplexních čísel, tj. Gaussova rovina. | Komplexní čísla se zobrazují v komplexní (Gaussově) rovině jako [[bod]]y se souřadnicemi ''x,y''; ''x'' je reálná část komplexního čísla, ''y'' imaginární část. Na [[osa|ose]] ''x'' leží reálná čísla, ose ''y'' ryze imaginární čísla. Kombinací těchto dvou složek (reálné a imaginární) dostaneme množinu všech komplexních čísel, tj. Gaussova rovina. | ||
=== Goniometrický tvar komplexních čísel === | === Goniometrický tvar komplexních čísel === | ||
- | Každé komplexní číslo '''z''' různé od nuly je možné jednoznačně vyjádřit v [[goniometrie|goniometrickém]] tvaru. Pokud si v komplexní rovině zvolíme [[Polární soustava souřadnic|polární]] [[souřadnicový systém]], vzdálenost od počátku označíme ''|z|'' ([[absolutní hodnota]], také nazývaná norma nebo modul) a orientovaný [[úhel]] < | + | Každé komplexní číslo '''z''' různé od nuly je možné jednoznačně vyjádřit v [[goniometrie|goniometrickém]] tvaru. Pokud si v komplexní rovině zvolíme [[Polární soustava souřadnic|polární]] [[souřadnicový systém]], vzdálenost od počátku označíme ''|z|'' ([[absolutní hodnota]], také nazývaná norma nebo modul) a orientovaný [[úhel]] <big>\(\phi = JOZ\)</big> (argument), kde J[1;0], O je počátkem soustavy a Z je obraz komplexního čísla ''a'' + ''bi'' se souřadnicemi Z[''a'';''b''], platí: |
- | < | + | <big>\(z=|z|(\cos \varphi + i.\sin \varphi) \,\)</big>. |
- | Absolutní hodnotu z algebraického tvaru komplexního čísla < | + | Absolutní hodnotu z algebraického tvaru komplexního čísla <big>\(z = a + bi\)</big> lze vyjádřit takto: <big>\(|z| = \sqrt{ a^2 + b^2 }\)</big>.<br /> |
- | Argument < | + | Argument <big>\(\varphi\)</big> lze vyjádřit ze vztahů: <big>\(\cos \varphi = \frac{a}{|z|}\)</big> a <big>\(\sin \varphi = \frac{b}{|z|}\)</big> |
Pro dělení komplexních čísel <br /> | Pro dělení komplexních čísel <br /> | ||
- | < | + | <big>\(z_1=|z_1|.(\cos \varphi_1 + i.\sin \varphi_1)\)</big> a <br /> |
- | < | + | <big>\(z_2=|z_2|.(\cos \varphi_2 + i.\sin \varphi_2)\)</big> <br /> |
platí následující rovnice: | platí následující rovnice: | ||
- | < | + | <big>\(\frac{z_1}{z_2}=\frac{|z_1|}{|z_2|}[\cos (\varphi_1 - \varphi_2) + i.\sin (\varphi_1 - \varphi_2)]\)</big> |
Pro násobení komplexních čísel ''z''<sub>1</sub> a ''z''<sub>2</sub> z předchozího příkladu slouží vzorec: | Pro násobení komplexních čísel ''z''<sub>1</sub> a ''z''<sub>2</sub> z předchozího příkladu slouží vzorec: | ||
- | < | + | <big>\(z_1 . z_2=|z_1| . |z_2| . [\cos (\varphi_1 + \varphi_2) + i.\sin (\varphi_1 + \varphi_2)]\)</big> |
Pro ''n''-tou [[umocňování|mocninu]] komplexní čísla v goniometrickém tvaru platí tzv. [[Moivreova věta]]: | Pro ''n''-tou [[umocňování|mocninu]] komplexní čísla v goniometrickém tvaru platí tzv. [[Moivreova věta]]: | ||
- | < | + | <big>\(z^n = |z|^n (\cos n\varphi + i\sin n\varphi) \,\)</big> |
- | Pro převod komplexních čísel z goniometrického tvaru na algebraický stačí zjistit hodnotu < | + | Pro převod komplexních čísel z goniometrického tvaru na algebraický stačí zjistit hodnotu <big>\(\cos \varphi\)</big> a <big>\(\sin \varphi\)</big> a roznásobit závorku jako při práci s klasickým mnohočlenem. |
---- | ---- | ||
Komplexní funkce reálné proměnné je [[Funkce (matematika)|funkce]], jejímž [[definiční obor|definičním oborem]] jsou reálná čísla a [[obor hodnot|oborem hodnot]] jsou komplexní čísla. | Komplexní funkce reálné proměnné je [[Funkce (matematika)|funkce]], jejímž [[definiční obor|definičním oborem]] jsou reálná čísla a [[obor hodnot|oborem hodnot]] jsou komplexní čísla. | ||
Řádka 61: | Řádka 61: | ||
Při práci s komplexními čísly se také často využívá [[Eulerův vzorec]]. | Při práci s komplexními čísly se také často využívá [[Eulerův vzorec]]. | ||
== Základní vlastnosti == | == Základní vlastnosti == | ||
- | Množina komplexních čísel se v matematice značí písmenem < | + | Množina komplexních čísel se v matematice značí písmenem <big>\(\mathbb{C}\)</big>. |
Komplexní čísla spolu se sčítáním, násobením a dělením tvoří [[těleso (algebra)|těleso]]. Je to největší komutativní nadtěleso reálných čísel a taky je to [[algebraický uzávěr]] tělesa reálných čísel. Toto těleso nelze uspořádat. | Komplexní čísla spolu se sčítáním, násobením a dělením tvoří [[těleso (algebra)|těleso]]. Je to největší komutativní nadtěleso reálných čísel a taky je to [[algebraický uzávěr]] tělesa reálných čísel. Toto těleso nelze uspořádat. | ||
- | Komplexní čísla < | + | Komplexní čísla <big>\(\mathbb{C}\)</big> je možno chápat jako dvoudimenzionální normovanou podílovou algebru nad <big>\(\mathbb{R}\)</big>. Existují právě dva [[automorfizmus|automorfizmy]] <big>\(\mathbb{C}\)</big> jakožto algebry nad <big>\(\mathbb{R}\)</big>: identita a konjugace. |
- | Je zajímavé, že existuje nekonečně mnoho automorfizmů < | + | Je zajímavé, že existuje nekonečně mnoho automorfizmů <big>\(\mathbb{C}\)</big> jako tělesa (ovšem jsou velmi nespojité a nezachovávají <big>\(\mathbb{R}\subset\mathbb{C}\)</big>, což znamená, že reálná a čistě imaginární čísla nejsou určena samotnou strukturou tělesa <big>\(\mathbb{C}\)</big> – porovnej s [[kvaternion]]y). |
== Definice pomocí uspořádaných dvojic == | == Definice pomocí uspořádaných dvojic == | ||
- | Často jsou také komplexní čísla zaváděna jako všechny uspořádané dvojice [[reálné číslo|reálných čísel]] < | + | Často jsou také komplexní čísla zaváděna jako všechny uspořádané dvojice [[reálné číslo|reálných čísel]] <big>\( (a,b) \)</big> s definovanými operacemi sčítání a násobení: |
- | < | + | <big>\((a,b)+(c,d)=(a+c,b+d) \,\)</big> |
- | < | + | <big>\((a,b)\cdot(c,d)=(ac-bd,ad+bc)\,\)</big> |
- | Znaménko < | + | Znaménko <big>\(\cdot\)</big> u násobení obvykle vynecháváme. |
- | Množinu všech komplexních čísel obvykle značíme < | + | Množinu všech komplexních čísel obvykle značíme <big>\(\mathbb C\)</big>. |
- | Číslo < | + | Číslo <big>\((0,1)\)</big> pak nazveme [[imaginární jednotka|imaginární jednotkou]] (zapisujeme <big>\(i\)</big>). Pro číslo <big>\(i\)</big> platí <big>\(i^2=-1\)</big>. |
Použitím axiomů [[reálné číslo|reálných čísel]] dostaneme následující tvrzení: | Použitím axiomů [[reálné číslo|reálných čísel]] dostaneme následující tvrzení: | ||
- | < | + | <big>\(\forall (a_1,a_2),(b_1,b_2),(c_1,c_2)\in{\mathbb C}:\)</big> |
- | 1. < | + | 1. <big>\((a_1,a_2)+(b_1,b_2)=(b_1,b_2)+(a_1,a_2)\,\)</big><br /> |
- | 2. < | + | 2. <big>\((a_1,a_2)+\big((b_1,b_2)+(c_1,c_2)\big)=\big((a_1,a_2)+(b_1,b_2)\big)+(c_1,c_2)\,\)</big><br /> |
- | 3. < | + | 3. <big>\((a_1,a_2)+(0,0)=(a_1,a_2)\,\)</big><br /> |
- | 4. < | + | 4. <big>\((a_1,a_2)+(-a_1,-a_2)=(0,0)\,\)</big><br /> |
- | 5. < | + | 5. <big>\((a_1,a_2)\cdot(b_1,b_2)=(b_1,b_2)\cdot(a_1,a_2)\)</big><br /> |
- | 6. < | + | 6. <big>\((a_1,a_2)\cdot\big((b_1,b_2)\cdot(c_1,c_2)\big)=\big((a_1,a_2)\cdot(b_1,b_2)\big)\cdot(c_1,c_2)\)</big><br /> |
- | 7. < | + | 7. <big>\((a_1,a_2)\cdot(1,0)=(a_1,a_2)\)</big><br /> |
- | 8. < | + | 8. <big>\(\forall(a_1,a_2)\neq(0,0)\;(a_1,a_2)\cdot\left({a_1\over a_1^2+a_2^2},{-a_2\over a_1^2+a_2^2}\right)=(1,0)\)</big><br /> |
- | 9. < | + | 9. <big>\((a_1,a_2)\cdot\big((b_1,b_2)+(c_1,c_2)\big)=(a_1,a_2)\cdot(b_1,b_2)+(a_1,a_2)\cdot(c_1,c_2)\)</big><br /> |
== Související články == | == Související články == | ||
* [[Komplexně sdružené číslo]] | * [[Komplexně sdružené číslo]] |
Aktuální verze z 14. 8. 2022, 14:52
Komplexní čísla (z latinského complexus, složený) vznikají rozšířením oboru reálných čísel tak, aby v něm každá algebraická rovnice měla příslušný počet řešení podle základní věty algebry. Například kvadratická rovnice x2 + 1 = 0 nemá v oboru reálných čísel řešení, protože její diskriminant (−4) je záporný a jeho odmocnina zde není definována. Komplexní číslo má dvě složky, reálnou a imaginární, a zapisuje se nejčastěji jako a + bi, přičemž i znamená imaginární jednotku, definovanou vztahem i2 = −1. Zmíněná rovnice pak má dvě řešení, ± i. Pro operace s komplexními čísly platí pravidla pro počítání s dvojčleny. Komplexní čísla lze interpretovat geometricky. Jako se reálná čísla zobrazují na reálné ose Re, budou imaginární čísla zobrazena na kolmé imaginární ose Im a každé komplexní číslo se zobrazí jako bod v rovině se souřadnicemi [x, y]. Číslo tvaru [x, 0] je reálné, číslo tvaru [0, y] je ryze imaginární. Absolutní hodnota komplexního čísla je pak vzdálenost bodu [x, y] od počátku souřadnic a číslo komplexně sdružené (tj. číslo [x, −y]) je zrcadlovým obrazem bodu [x, y] podle reálné osy Re. Komplexní čísla jsou významná nejen v matematice, ale také ve fyzice, zejména v elektrotechnice, v optice, v hydrodynamice i jinde.
Obsah |
Zápis a související pojmy
Komplexním číslem nazveme číslo tvaru \( a + bi \,\! \), kde \( a \,\! \) a \( b \,\! \) jsou reálná čísla. Tento tvar komplexního čísla se nazývá algebraický. Písmeno \( i \,\! \) značí imaginární jednotku, která se formálně zavádí jako číslo splňující rovnici \(i^2+1=0\,,\) tj. jako odmocnina z −1, která v reálných číslech neexistuje. Elektrotechnici používají komplexní čísla velice často k výpočtu střídavých proudů obvodem, a protože přitom střídavý proud označují malým písmenem i, neoznačují imaginární jednotku písmenem i, ale písmenem j. Reálné číslo \( a \,\! \) se nazývá reálnou částí tohoto komplexního čísla a číslo \( b \,\! \) jeho imaginární částí. Pokud je \( b = 0 \,\! \), je dotyčné číslo reálným číslem \( a \,\! \), tj. reálná čísla tvoří podmnožinu čísel komplexních. Pokud je \( a = 0 \,\! \), mluvíme o ryze imaginárním číslu.
Značení
Potřebujeme-li pracovat pouze s reálnou, resp. imaginární částí komplexního čísla \(z \,\!\), používáme zápis \(a = \mathrm{Re}(z) = \Re(z)\), \(b = \mathrm{Im}(z) = \Im(z)\), kde \(a,b \,\!\) jsou reálná čísla. Komplexní číslo \(z \,\!\) lze tedy také vyjádřit některým z následujících zápisů \(z = a + \mathrm{i}b = \mathrm{Re}(z) + \mathrm{i} \mathrm{Im}(z) = \Re(z) + \mathrm{i} \Im(z) \,\!\). S imaginární jednotkou se zachází jako s každým jiným číslem, proto je možné používat následujících zkrácených zápisů:
- \( 0 + x.i = x.i \,\! \)
- \( x + 0.i = x \,\! \)
- \( 1.i = i \,\! \)
- \( -1.i = -i \,\! \)
Příklad
Číslo \( z = 3 + 2i \,\! \) má reálnou část \( \mathrm{Re}(z) = 3 \,\!\) a imaginární část \( \mathrm{Im}(z) = 2 \,\!\). Nejedná se ani o reálné, ani o ryze imaginární číslo.
Důvody pro zavedení komplexních čísel
Už perský matematik Al-Khwarizmi (asi 820) si všiml, že některé kvadratické rovnice nemají řešení. Italský matematik Girolamo Cardano (1501-1576) ukázal, že by stačilo vhodně definovat odmocninu záporného čísla, a René Descartes zavedl 1637 označení reálné a imaginární číslo. Zajímavé výsledky zkoumání těchto „neskutečných“ čísel ukázal Leonhard Euler a komplexní čísla přesně zavedl francouzský matematik Augustin Louis Cauchy (1821) a nezávisle na něm Carl Friedrich Gauss (1831). Obor reálných čísel, který vyjadřuje dostatečně dobře jakoukoliv kvantitu (množství), se tedy rozšiřuje do oboru komplexních čísel, jejichž význam není intuitivně příliš zřejmý, především proto, že v reálném oboru neleží řešení (kořeny) některých algebraických rovnic, čili obor reálných čísel není vzhledem k nim uzavřený. V oboru reálných čísel existují polynomy (s reálnými koeficienty a kladnými nezápornými celočíselnými exponenty), které nemají v oboru reálných čísel žádný kořen, případně je počet jejich reálných kořenů nižší, než stupeň polynomu. Obor komplexních čísel je uzavřený nejen na výše uvedené kořeny polynomů s reálnými koeficienty, ale i na kořeny polynomů s komplexními koeficienty. Tuto uzavřenost zaručuje Základní věta algebry, která tvrdí, že polynom n-tého stupně má v oboru komplexních čísel n kořenů.
Příklad
Polynom \( x^2 + 1 \,\! \) nemá v oboru reálných čísel žádný kořen. V oboru komplexních čísel jsou jeho kořeny čísla \( i \,\! \) a \( -i \,\! \), protože:
- \( i^2 + 1 = -1 + 1 = 0 \,\! \)
- \( (-i)^2 + 1 = -1 + 1 = 0 \,\! \)
Operace s komplexními čísly
Algebraický tvar komplexních čísel
Pro čísla v algebraickém tvaru lze jednoduchými algebraickými úpravami odvodit vztahy pro součet, rozdíl a součin dvou komplexních čísel:
- \((a+ib)+(c+id)=(a+c)+i(b+d) \,\! \)
- \((a+ib)-(c+id)=(a-c)+i(b-d) \,\! \)
- \((a+ib)\cdot(c+id)=(ac-bd)+i(ad + bc) \,\! \)
Podíl dvou komplexních čísel lze vyjádřit takto:
- \( {a + ib \over c + id} = {(a + ib) (c - id) \over (c + i d) (c - i d)} = {(ac+bd) + i (bc-ad) \over c^2 + d^2} = \left({a c + b d \over c^2 + d^2}\right) + i \left( {b c - a d \over c^2 + d^2} \right). \)
Pro komplexní číslo \(z=a+bi\) je definována konjugace (komplexně sdružené číslo) \(\bar{z}:=a-bi\). Jejich součin \(z\bar{z}=a^2+b^2\) je vždy reálný a nezáporný a je roven nule pouze když \(z=0\). Pak můžeme psát pro inverzi stručně \(z^{-1}=\bar{z}/(z\bar{z})\) pro \(z\neq 0\). Norma komplexního čísla \(z\) je definována jako \(|z|:=\sqrt{z\bar{z}}\). Platí, že pro libovolná komplexní čísla \(z,w\) je \(|zw|=|z||w|\), t.j. norma součinu je součin norem.
Geometrické znázornění komplexních čísel
Komplexní čísla se zobrazují v komplexní (Gaussově) rovině jako body se souřadnicemi x,y; x je reálná část komplexního čísla, y imaginární část. Na ose x leží reálná čísla, ose y ryze imaginární čísla. Kombinací těchto dvou složek (reálné a imaginární) dostaneme množinu všech komplexních čísel, tj. Gaussova rovina.
Goniometrický tvar komplexních čísel
Každé komplexní číslo z různé od nuly je možné jednoznačně vyjádřit v goniometrickém tvaru. Pokud si v komplexní rovině zvolíme polární souřadnicový systém, vzdálenost od počátku označíme |z| (absolutní hodnota, také nazývaná norma nebo modul) a orientovaný úhel \(\phi = JOZ\) (argument), kde J[1;0], O je počátkem soustavy a Z je obraz komplexního čísla a + bi se souřadnicemi Z[a;b], platí:
\(z=|z|(\cos \varphi + i.\sin \varphi) \,\).
Absolutní hodnotu z algebraického tvaru komplexního čísla \(z = a + bi\) lze vyjádřit takto: \(|z| = \sqrt{ a^2 + b^2 }\).
Argument \(\varphi\) lze vyjádřit ze vztahů: \(\cos \varphi = \frac{a}{|z|}\) a \(\sin \varphi = \frac{b}{|z|}\)
Pro dělení komplexních čísel
\(z_1=|z_1|.(\cos \varphi_1 + i.\sin \varphi_1)\) a
\(z_2=|z_2|.(\cos \varphi_2 + i.\sin \varphi_2)\)
platí následující rovnice:
\(\frac{z_1}{z_2}=\frac{|z_1|}{|z_2|}[\cos (\varphi_1 - \varphi_2) + i.\sin (\varphi_1 - \varphi_2)]\)
Pro násobení komplexních čísel z1 a z2 z předchozího příkladu slouží vzorec:
\(z_1 . z_2=|z_1| . |z_2| . [\cos (\varphi_1 + \varphi_2) + i.\sin (\varphi_1 + \varphi_2)]\)
Pro n-tou mocninu komplexní čísla v goniometrickém tvaru platí tzv. Moivreova věta:
\(z^n = |z|^n (\cos n\varphi + i\sin n\varphi) \,\)
Pro převod komplexních čísel z goniometrického tvaru na algebraický stačí zjistit hodnotu \(\cos \varphi\) a \(\sin \varphi\) a roznásobit závorku jako při práci s klasickým mnohočlenem.
Komplexní funkce reálné proměnné je funkce, jejímž definičním oborem jsou reálná čísla a oborem hodnot jsou komplexní čísla. Platí: h(x) = f(x) + ig(x) kde f je reálná část a g imaginární část komplexní funkce h. Obrazem takovéto funkce v Gaussově rovině je množina všech bodů X = [f(x),g(x)], kde x je z definičního oboru funkce. Při práci s komplexními čísly se také často využívá Eulerův vzorec.
Základní vlastnosti
Množina komplexních čísel se v matematice značí písmenem \(\mathbb{C}\). Komplexní čísla spolu se sčítáním, násobením a dělením tvoří těleso. Je to největší komutativní nadtěleso reálných čísel a taky je to algebraický uzávěr tělesa reálných čísel. Toto těleso nelze uspořádat. Komplexní čísla \(\mathbb{C}\) je možno chápat jako dvoudimenzionální normovanou podílovou algebru nad \(\mathbb{R}\). Existují právě dva automorfizmy \(\mathbb{C}\) jakožto algebry nad \(\mathbb{R}\): identita a konjugace. Je zajímavé, že existuje nekonečně mnoho automorfizmů \(\mathbb{C}\) jako tělesa (ovšem jsou velmi nespojité a nezachovávají \(\mathbb{R}\subset\mathbb{C}\), což znamená, že reálná a čistě imaginární čísla nejsou určena samotnou strukturou tělesa \(\mathbb{C}\) – porovnej s kvaterniony).
Definice pomocí uspořádaných dvojic
Často jsou také komplexní čísla zaváděna jako všechny uspořádané dvojice reálných čísel \( (a,b) \) s definovanými operacemi sčítání a násobení:
\((a,b)+(c,d)=(a+c,b+d) \,\)
\((a,b)\cdot(c,d)=(ac-bd,ad+bc)\,\)
Znaménko \(\cdot\) u násobení obvykle vynecháváme.
Množinu všech komplexních čísel obvykle značíme \(\mathbb C\).
Číslo \((0,1)\) pak nazveme imaginární jednotkou (zapisujeme \(i\)). Pro číslo \(i\) platí \(i^2=-1\).
Použitím axiomů reálných čísel dostaneme následující tvrzení:
\(\forall (a_1,a_2),(b_1,b_2),(c_1,c_2)\in{\mathbb C}:\)
1. \((a_1,a_2)+(b_1,b_2)=(b_1,b_2)+(a_1,a_2)\,\)
2. \((a_1,a_2)+\big((b_1,b_2)+(c_1,c_2)\big)=\big((a_1,a_2)+(b_1,b_2)\big)+(c_1,c_2)\,\)
3. \((a_1,a_2)+(0,0)=(a_1,a_2)\,\)
4. \((a_1,a_2)+(-a_1,-a_2)=(0,0)\,\)
5. \((a_1,a_2)\cdot(b_1,b_2)=(b_1,b_2)\cdot(a_1,a_2)\)
6. \((a_1,a_2)\cdot\big((b_1,b_2)\cdot(c_1,c_2)\big)=\big((a_1,a_2)\cdot(b_1,b_2)\big)\cdot(c_1,c_2)\)
7. \((a_1,a_2)\cdot(1,0)=(a_1,a_2)\)
8. \(\forall(a_1,a_2)\neq(0,0)\;(a_1,a_2)\cdot\left({a_1\over a_1^2+a_2^2},{-a_2\over a_1^2+a_2^2}\right)=(1,0)\)
9. \((a_1,a_2)\cdot\big((b_1,b_2)+(c_1,c_2)\big)=(a_1,a_2)\cdot(b_1,b_2)+(a_1,a_2)\cdot(c_1,c_2)\)
Související články
Reference
- Prof. RNDr. Miloš Ráb, DrSc.: Komplexní čísla v elementární matematice, Masarykova univerzita, Brno, 1997, ISBN 80-210-1475-X
Externí odkazy
- Komplexní čísla ve výuce matematiky na střední škole s využitím internetu, Lenka Šilarová, diplomová práce MFF UK
- Repetitorium středoškolské matematiky (Ostravská univerzita) - Komplexní čísla
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |