The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Laminární proudění

Z Multimediaexpo.cz

Laminární proudění (na obrázku dole) a turbulentní proudění (nahoře) kolem trupu ponorky

Laminární proudění je takové proudění vazké kapaliny, při kterém jsou proudnice rovnoběžné a nemísí se. Částice kapaliny se pohybují vedle sebe jakoby ve vrstvách - „destičkách“ (destička = lat. lamina), které se vzájemně nepromíchávají. Odtud také laminární neboli vrstevnaté proudění. Mezi jednotlivými vrstvami se předpokládá existence vnitřního tření a platnost vztahu Newtonova zákona viskozity. Laminární proudění je tedy proudění kapaliny s vnitřním třením, které není potenciálové. Laminární proudění lze použít jako vhodnou aproximaci proudění reálných kapalin při malých rychlostech.

Obsah

Ustálené proudění v úzké trubici

Proudění vazké kapaliny v úzké trubici lze při nízkých rychlostech považovat za laminární.

Rychlostní profil

Soubor:Laminarni proudeni.png
Schéma k výpočtu rychlosti laminárního proudění

Uvažujme v trubici o poloměru \(r\) malý válec kapaliny o poloměru \(x\) a délce \(\Delta l\). Na vstupní průřez tohoto válce působí tlak \(p_1\) a na výstupní průřez tlak \(p_2\). Tlakový rozdíl na délce \(\Delta l\) má hodnotu \(\Delta p=p_1-p_2\). Tlaková síla, která na válec působí ve směru toku, je

\(F = \pi x^2\Delta p\)

Tato síla odpovídá odporu kapaliny proti proudění. Tento odpor je způsoben vnitřním tření mezi pláštěm válce a kapalinou, která jej obklopuje, přičemž jej lze vyjádřit jako

\(F_t = 2\pi x\Delta l\tau\),

kde \(\tau\) je tečné napětí. Při ustáleném proudění musí být \(F\) a \(F_t\) v rovnováze. Z předchozích vztahů tedy dostaneme

\(\pi x^2\Delta p = -\pi x\Delta l\eta \frac{\mathrm{d}v}{\mathrm{d}x}\)

Odtud po úpravě a integraci dostaneme pro rychlostní profil (tedy rozložení rychlostí v trubici) výraz

\(v = -\frac{1}{4\eta}\frac{\Delta p}{\Delta l}x^2 + k\),

kde \(k\) je integrační konstanta, kterou určíme z podmínky, že na vnitřní straně trubice je rychlost nulová, tzn. \(v=0\) pro \(x=r\). Po dosazení úpravě dostaneme

\(v = \frac{1}{4\eta}\frac{\mathrm{d}p}{\mathrm{d}l}(r^2-x^2)\)

Podle tohoto vztahu je tedy závislost rychlosti \(v\) na \(x\) (tedy na vzdálenosti od středu trubice) parabolická.

Hagen-Poiseuilleův zákon

Ze znalosti rozložení rychlostí je možné spočítat objemový tok \(Q_v\). Rychlost \(v\) je v určité vzdálenosti \(x\) od osy trubice konstantní. Plochou mezikruží ve vzdálenosti \(x\) a šířce \(\mathrm{d}x\) proteče za časovou jednotku kapalina o objemu

\(\mathrm{d}Q_v = 2\pi xv\mathrm{d}x = \frac{\pi}{2\eta}\frac{\Delta p}{\Delta l}(r^2-x^2)x\mathrm{d}x\)

Integrací přes celý průřez trubice dostaneme

\(Q_v = \frac{\pi r^4}{8\eta}\frac{\Delta p}{\Delta l}\)

Tento vztah je matematickým vyjádřením tzv. Hagen-Poiseuilleova zákona, který zní:

Objemový tok viskozní tekutiny při laminárním proudění trubicí kruhového průřezu je přímo úměrný tlakovému spádu \(\frac{\Delta p}{\Delta l}\) a čtvrté mocnině poloměru trubice a je nepřímo úměrný dynamické viskozitě \(\eta\).

Maximální a průměrná rychlost proudění

Maximální rychlost, kterou se tekutina při laminárním proudění trubicí pohybuje má hodnotu

\(v_\mbox{max} = \frac{1}{4\eta}\frac{\Delta p}{\Delta l}r^2\)

a nachází se na ose trubice (\(x=0\)). Průměrnou rychlost, kterou kapalina protéká trubicí při laminárním proudění můžeme určit jako podíl objemového toku a celkového průřezu trubice (\(S=\pi r^2\)), tzn.

\(v_s = \frac{Q_v}{S} = \frac{1}{8\eta}\frac{\Delta p}{\Delta l}r^2 = \frac{1}{2}v_\mbox{max}\)

Vlastnosti

Laminární proudění je vírové, neboť část kapaliny, která se nachází mezi dvěma vrstvami s různými rychlostmi má tendenci se otáčet. Vírová vlákna mají tvar soustředných kružnic, jejichž středy leží na ose trubice. O vírové povaze laminárního proudění se lze přesvědčit výpočtem podmínky pro potenciálové proudění po libovolné uzavřené dráze. Zvolme dva body \(A, B\) na ose trubice ve vzdálenosti \(s\) a dva body \(C, D\) na okraji trubice ve stejné vzdálenosti, a to tak, že \(D\) se nachází na stejném řezu trubicí jako \(A\) a bod \(C\) se nachází na stejném řezu jako \(B\). Vzhledem k tomu, že rychlost na okraji trubice je nulová a mezi body \(A,D\) a \(B,C\) je vektor rychlosti kolmý na dráhu, dostaneme

\(\oint v\mathrm{d}s = \int_A^B v\mathrm{d}s = v_\mbox{max}s\)

Podobně lze zjistit, že pro jakoukoli jinou uzavřenou dráhu (která není souměrná podle osy trubce) by uvedený integrál byl nenulový. To znamená, že proudění není potenciálové a také, že \(\operatorname{rot}v\) je různé od nuly. Jednotlivé částice kapaliny mají tedy snahu se otáčet, a proto je proudění vířivé. Tlakový spád \(\frac{\Delta p}{\Delta l}\) je mírou odporu kapaliny proti proudění, tzn.

\(F\sim\frac{\Delta p}{\Delta l}\sim v_s\)

Při malé rychlosti proudění kapaliny se víry nemohou výrazně rozvinout a proudění probíhá tak, jako by se skládalo z nekonečně tenkých vírových vláken ve tvaru koncentrických kružnic. Při zvýšení rychlosti proudění však víry začnou proudění ovlivňovat výrazně a laminární proudění přejde v proudění turbulentní. Jako kritérium pro odlišení laminárního proudění od proudění turbulentního lze použít Reynoldsovo číslo.

Související články

Externí odkazy