The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Sigma algebra

Z Multimediaexpo.cz

\(\sigma\)-algebra (sigma-algebra, též \(\sigma\)-těleso) je v matematice libovolný neprázdný systém množin, který je uzavřený na spočetné sjednocení a na rozdíl dvou prvků a obsahuje sjednocení všech svých prvků.

Prefix \(\sigma\) v názvu vyjadřuje uzavřenost na spočetné sjednocení.

Obsah

Formální definice

Systém \(\mathcal{A} \) podmnožin množiny \(\mathcal{\Omega}\) nazveme \(\sigma\)-algebrou, jestliže obsahuje prázdnou množinu a je uzavřený na spočetné sjednocení a doplněk, tj.

  1. \(\emptyset\in\mathcal{A}\)
  2. jestliže \((\forall n \in \mathbb{N}) (M_{n} \in \mathcal{A})\), pak \(\bigcup_{n=1}^{\infty} M_{n} \in \mathcal{A}\)
  3. jestliže \(M \in \mathcal{A}\), pak \(\Omega \setminus M \in \mathcal{A}\)

Další vlastnosti

  • \(\sigma\)-algebra obsahuje sjednocení všech svých prvků: \(\left(\bigcup_{M \in \mathcal{A}} M\right) \in \mathcal{A}\); dostaneme dosazením prázdné množiny za \(M\) v poslední části definice
  • \(\sigma\)-algebra je uzavřená na spočetný průnik svých prvků: jestliže \((\forall n \in \mathbb{N}) (A_{n} \in \mathcal{R})\), pak \(\bigcap_{n=1}^{\infty} A_{n} \in \mathcal{R}\)

Použití

Koncept \(\sigma\)-algebry je důležitý především v teorii míry a v teorii pravděpodobnosti. Míra je libovolná nezáporná množinová funkce, která je \(\sigma\)-aditivní a má na prázdné množině hodnotu 0. Pravděpodobnost je míra, která má na univerzální množině \(\Omega\) hodnotu 1.

Měřitelná množina

V teorii míry se dvojice \((\Omega,\mathcal{A}) \), kde \(\Omega\) je libovolná množina a \(\mathcal{A}\) je \(\sigma\)-algebra na \(\Omega\) nazývá měřitelný prostor a množiny \(\mathcal{S} \in \mathcal{A}\) nazýváme měřitelné množiny.

Související články