V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.

Centrální moment

Z Multimediaexpo.cz

Centrální moment je pojem z matematické statistiky. Pro přirozené číslo \(k</math> je k-tý centrální moment jisté reálné číslo charakterizující rozdělení náhodné veličiny. K-tý centrální moment se označuje \(\mu_k</math>.

Obsah

Definice

K-tý centrální moment náhodné veličiny \(X</math> je definován vzorcem

\(\mu_k = \operatorname{E}\left[(X - \mu)^k\right]</math>,

kde \(\mu</math> je střední hodnota dané veličiny (pokud má vzorec smysl).

Pro diskrétní náhodné veličiny lze psát

\(\mu_k = \sum_{i=1}^\infty(x_i - \mu)^kp_i</math>,

kde \(p_i</math> je pravděpodobnost, že \(X</math> nabývá hodnoty \(x_i</math>.

Pro spojité náhodné veličiny na reálných číslech lze psát

\(\mu_k = \int_{-\infty}^\infty (x-\mu)^kf(x)\operatorname{d}x</math>,

kde \(f(x)</math> je hustota rozdělení dané veličiny.

Označení centrálních momentů

První centrální moment je vždy roven 0.

Druhý centrální moment se nazývá rozptyl a označuje se symbolem \(\sigma^2</math> nebo \(\operatorname{var}\,X</math>.

Třetí a čtvrtý centrální moment jsou součástí definice šikmosti a špičatosti.

Vlastnosti

Centrální moment je nezávislý na posunu o konstantu, tj.

\(\mu_k\left(X+c\right) = \mu_k(X)</math>

Pro násobení konstantou platí

\(\mu_k\left(cX\right) = c^k\mu_k(X)</math>

Pro \(k\leq 3</math> a nezávislé náhodné veličiny \(X, Y</math> platí

\(\mu_k\left(X+Y\right) = \mu_k(X) + \mu_k(Y)</math>

Mezi centrálními momenty a obecnými momenty je vztah

\(\mu_k = \sum_{i=0}^k\binom{k}{i}(-1)^{k-i}\mu^{k-i}\mu_i^\prime</math>,

kde \(\mu</math> je střední hodnota a \(\mu_i^\prime</math> je i-tý obecný moment.

Výběrový centrální moment

Výběrový centrální moment je definován vzorcem

\( m_k = \frac1n\sum_{i=1}^n\left(x_i-\overline{x}\right)^k </math>

Výběrový centrální moment je nevyvážený odhad centrálního momentu, vyvážené odhady jsou:

  • \(M_2 &= \frac{n}{n-1}k_2 = \frac1{n-1}\sum_{i=1}^n\left(x_i-\overline{x}\right)^2</math>
  • \(M_3 &= \frac{n^2}{(n-1)(n-2)}m_3</math>
  • \(M_4 &= \frac{n^2}{(n-1)(n-2)(n-3)}(n+1)m_4 - 3(n-1)m_2^2</math>

Reference