Nová soutěž o nejlepší webovou stránku !
Neváhejte a začněte rychle soutěžit o lákavé ceny !

Diskriminant

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)

Verze z 30. 6. 2020, 14:38

Diskriminant je polynom s reálnými nebo imaginárními koeficienty, který se používá při řešení polynomických rovnic, zvláště pak kvadratických rovnic. Diskriminant rozhoduje o kvalitě a počtu kořenů.

Obsah

Diskriminant kvadratických rovnic

Pro kvadratickou rovnici <math>ax^2 + bx + c = 0</math> (kde <math>a \neq 0</math>) je diskriminant <math>D = b^2 - 4ac</math>.

Pokud <math>D > 0</math>, pak má daná rovnice právě dva různé reálné kořeny <math>x_{1,2} = \frac{- b \pm \sqrt{D}}{2a}</math>.

Pokud <math>D = 0</math>, pak má daná rovnice právě jeden dvojnásobný reálný kořen <math>x_1 = x_2 = -\frac{b}{2a}</math>.

Pokud <math>D < 0</math>, pak má daná rovnice právě dva různé komplexně sdružené kořeny <math>x_{1,2} = \frac{- b \pm i\sqrt{-D}}{2a}</math>.

Diskriminant ryze kvadratické rovnice <math>ax^2 + c = 0</math> (kde <math>a, c \neq 0</math>) je <math>D_r = -4ac</math>.

Diskriminant kvadratické rovnice v normovaném tvaru <math>x^2 + bx + c = 0</math> je <math>D_n = b^2 - 4c</math>.

Diskriminant triviální kvadratické rovnice <math>ax^2 = 0</math> (kde <math>a \neq 0</math>) je roven 0.

Diskriminant kubických rovnic

U kubické rovnice: <math>ax^3+bx^2+cx+d</math> (kde <math>a \neq 0</math>) je diskriminant <math>D = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd</math>.

Související články

Externí odkazy