The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Elektrický potenciál

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Výrazné vylepšení)
(+ Aktualizace)
 
(Není zobrazena jedna mezilehlá verze.)
Řádka 1: Řádka 1:
-
{{Wikipedia-cs|Elektrický potenciál|700}}
+
'''Elektrický potenciál''' je [[skalár]]ní [[fyzikální veličina]], která popisuje [[Potenciální energie|potenciální energii]] jednotkového [[Elektrický náboj|elektrického náboje]] v neměnném [[Elektrické pole|elektrickém poli]]. Jedná se tedy o [[potenciál]] elektrického pole, tzn. množství [[Práce (fyzika)|práce]] potřebné pro přenesení jednotkového elektrického náboje ze vztažného bodu, kterému je přisouzen nulový potenciál, do daného místa.
 +
Za místo s [[nula|nulovým]] potenciálem (tzn. vztažný bod) se obvykle bere buď [[nekonečno|nekonečně]] vzdálený bod (běžné u jiných potenciálů, u elektřiny obvykle pouze v teoretických úlohách), nebo povrch [[Země]].
 +
 +
== Značení ==
 +
* Značka: ''φ''
 +
* [[fyzikální jednotka|Jednotka]]: [[volt]], značka: V
 +
 +
== Výpočet ==
 +
Jelikož elektrický potenciál vyjadřuje [[potenciální energie|potenciální energii]] na jednotku [[elektrický náboj|náboje]], je možné jej vyjádřit jako
 +
:<big>\(\varphi = \frac{W}{Q}\)</big>,
 +
kde ''W'' je potenciální energie nabitého tělesa a ''Q'' je jeho náboj.
 +
 +
 +
Potenciál [[bodový náboj|bodového náboje]], který se nachází v počátku soustavy souřadnic, lze zapsat jako
 +
:<big>\(\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon}\frac{Q}{r} + \varphi_0\)</big>,
 +
kde <big>\(\boldsymbol{r}\)</big> je [[polohový vektor]] bodu prostoru a <big>\(\varphi_0\)</big> je [[Integrační konstanta]], která určuje hodnotu potenciálu v nekonečnu.
 +
Obvykle se klade <big>\(\varphi_0 = 0\)</big>.
 +
 +
Potenciál objemově rozloženého náboje s [[hustota elektrického náboje|hustotou náboje]] <big>\(\rho\)</big> lze vyjádřit vztahem
 +
:<big>\(\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon}\int_V \frac{\rho(\boldsymbol{r}^\prime)}{|\boldsymbol{r}-\boldsymbol{r}^\prime|}\mathrm{d}V\)</big>,
 +
kde <big>\(V\)</big> je celkový [[objem]], přes který se [[Integrál|integruje]].
 +
 +
Tento potenciál je definován ve všech bodech prostoru, tedy také v bodech, ve kterých je hustota náboje <big>\(\rho\)</big> nenulová. Tím se potenciál spojitě rozloženého náboje odlišuje od potenciálu soustavy bodových nábojů. Tento potenciál je navíc všude [[spojitost|spojitý]] a má ve všech bodech prostoru [[parciální derivace|parciální derivaci]] alespoň prvního řádu, což v souvislosti s [[intenzita elektrického pole|intenzitou elektrického pole]] znamená, že také intenzita pole daná tímto vztahem je definována ve všech bodech prostoru včetně bodů, v nichž je hustota náboje nenulová.
 +
 +
Potenciál [[plošný náboj|plošně rozloženého náboje]] lze vyjádřit jako
 +
:<big>\(\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon}\int_S \frac{\sigma(\boldsymbol{r}^\prime)}{|\boldsymbol{r}-\boldsymbol{r}^\prime|}\mathrm{d}S\)</big>,
 +
kde <big>\(\sigma\)</big> je [[plošná hustota elektrického náboje]].
 +
 +
 +
Pro potenciál [[lineární náboj|lineárně rozloženého náboje]] platí
 +
:<big>\(\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon}\int_l \frac{\tau(\boldsymbol{r}^\prime)}{|\boldsymbol{r}-\boldsymbol{r}^\prime|}\mathrm{d}l\)</big>,
 +
kde <big>\(\tau\)</big> je [[lineární hustota elektrického náboje]].
 +
 +
=== Poissonova rovnice ===
 +
Dosadíme-li do [[Gaussův zákon elektrostatiky|Gaussova zákona elektrostatiky]] pro spojitě [[objemový náboj|rozložený náboj]] místo [[intenzita elektrického pole|intenzity elektrického pole]] potenciál, dostaneme
 +
:<big>\(\operatorname{div}\boldsymbol{E} = -\operatorname{div}\,\operatorname{grad}\,\varphi = \frac{\rho}{\varepsilon_0}\)</big>
 +
 +
Využijeme-li z [[vektorová analýza|vektorové analýzy]] tzv. [[Laplaceův operátor]] <big>\(\Delta = \operatorname{div}\,\operatorname{grad}\)</big>, lze předchozí vztah zapsat ve tvaru [[Poissonova rovnice|Poissonovy rovnice]]
 +
:<big>\(\Delta\varphi = -\frac{\rho}{\varepsilon_0}\)</big>
 +
 +
Tato rovnice je platná ve všech bodech prostoru, v nichž platí [[Gaussův zákon elektrostatiky|Gaussův zákon]].
 +
 +
Pokud je v některých bodech prostoru [[objemová hustota elektrického náboje|objemová hustota]] [[nula|nulová]], tzn. <big>\(\rho=0\)</big>, zjednoduší se předchozí rovnice na rovnici, která se označuje jako [[Laplaceova rovnice|rovnice Laplaceova]]
 +
:<big>\(\Delta\varphi = 0\)</big>
 +
 +
== Vlastnosti ==
 +
Na základě [[princip superpozice|principu superpozice]] lze odvodit výraz pro potenciál soustavy <big>\(n\)</big> bodových nábojů <big>\(Q_1\)</big> až <big>\(Q_n\)</big>, jejichž [[polohový vektor|polohové vektory]] jsou <big>\(\boldsymbol{r}_1\)</big> až <big>\(\boldsymbol{r}_n\)</big>.
 +
:<big>\(\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon}\sum_{i=1}^n\frac{Q_i}{|\boldsymbol{r}-\boldsymbol{r}_i|} + \varphi_0\)</big>
 +
 +
Potenciál jednoho z bodových nábojů <big>\(Q_i\)</big> ze soustavy nábojů <big>\(Q_1\)</big> až <big>\(Q_n\)</big> vzhledem k ostatním nábojům soustavy lze určit podle principu superpozice jako
 +
:<big>\(\varphi_i = \frac{1}{4\pi\varepsilon}\sum_{j\ne i}\frac{Q_j}{|\boldsymbol{r}_i-\boldsymbol{r}_j|}\)</big>
 +
 +
Záporný [[Gradient (matematika)|gradient]] potenciálu je roven [[elektrická intenzita|intenzitě elektrického pole]], tzn.
 +
:<big>\(\boldsymbol{E}(\boldsymbol{r}) = -\operatorname{grad}\,\varphi(\boldsymbol{r})\)</big>
 +
 +
Potenciál elektrostatického pole lze podle chápat jako potenciální energii jednotkového náboje. Položíme-li potenciál v [[nekonečno|nekonečnu]] roven [[nula|nule]], tzn. <big>\(\varphi_0=0\)</big>, potom lze podle předchozího vztahu psát
 +
:<big>\(\varphi(\boldsymbol{r}) = -\int_\infty^\boldsymbol{r} \boldsymbol{E}\cdot\mathrm{d}\boldsymbol{l}\)</big>
 +
 +
Rozdíl potenciálů je roven [[elektrické napětí|napětí]] mezi danými body.
 +
 +
[[Plocha]], na níž si potenciál zachovává svoji hodnotu, tzn. <big>\(\varphi=\mbox{konst}\)</big>, se nazývá [[ekvipotenciální plocha]].
 +
 +
[[Siločáry]] jsou vždy [[Ortogonalita|kolmé]] k ekvipotenciálním plochám. To lze ukázat [[Diferenciál (matematika)|diferenciací]] vztahu <big>\(\varphi=\mbox{konst}\)</big>, tzn.
 +
:<big>\(\mathrm{d}\varphi = \frac{\partial\varphi}{\partial x}\mathrm{d}x + \frac{\partial\varphi}{\partial y}\mathrm{d}y + \frac{\partial\varphi}{\partial z}\mathrm{d}z = -(E_x\mathrm{d}x+E_y\mathrm{d}y+E_z\mathrm{d}z) = -\boldsymbol{E}\cdot\mathrm{d}\boldsymbol{r} = 0\)</big>,
 +
kde <big>\(\mathrm{d}\boldsymbol{r}\)</big> leží v [[tečná rovina|tečné rovině]] k ekvipotenciální ploše. [[Vektor]]y <big>\(\boldsymbol{E}\)</big> a <big>\(\mathrm{d}\boldsymbol{r}\)</big> jsou tedy vzájemně [[Ortogonalita|kolmé]], tzn. <big>\(\boldsymbol{E}\)</big> je kolmé k ekvipotenciální ploše.
 +
 +
== Související články ==
 +
* [[Elektrické napětí]]
 +
* [[Elektrický náboj]]
 +
* [[Elektrické pole]]
 +
 +
== Externí odkazy ==
 +
 +
 +
{{Commonscat|Electric potential}}{{Článek z Wikipedie}}
[[Kategorie:Fyzikální veličiny]]
[[Kategorie:Fyzikální veličiny]]
[[Kategorie:Elektromagnetismus]]
[[Kategorie:Elektromagnetismus]]
[[Kategorie:Elektrotechnika]]
[[Kategorie:Elektrotechnika]]

Aktuální verze z 2. 9. 2022, 17:40

Elektrický potenciál je skalární fyzikální veličina, která popisuje potenciální energii jednotkového elektrického náboje v neměnném elektrickém poli. Jedná se tedy o potenciál elektrického pole, tzn. množství práce potřebné pro přenesení jednotkového elektrického náboje ze vztažného bodu, kterému je přisouzen nulový potenciál, do daného místa.

Za místo s nulovým potenciálem (tzn. vztažný bod) se obvykle bere buď nekonečně vzdálený bod (běžné u jiných potenciálů, u elektřiny obvykle pouze v teoretických úlohách), nebo povrch Země.

Obsah

Značení

Výpočet

Jelikož elektrický potenciál vyjadřuje potenciální energii na jednotku náboje, je možné jej vyjádřit jako

\(\varphi = \frac{W}{Q}\),

kde W je potenciální energie nabitého tělesa a Q je jeho náboj.


Potenciál bodového náboje, který se nachází v počátku soustavy souřadnic, lze zapsat jako

\(\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon}\frac{Q}{r} + \varphi_0\),

kde \(\boldsymbol{r}\) je polohový vektor bodu prostoru a \(\varphi_0\) je Integrační konstanta, která určuje hodnotu potenciálu v nekonečnu. Obvykle se klade \(\varphi_0 = 0\).

Potenciál objemově rozloženého náboje s hustotou náboje \(\rho\) lze vyjádřit vztahem

\(\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon}\int_V \frac{\rho(\boldsymbol{r}^\prime)}{|\boldsymbol{r}-\boldsymbol{r}^\prime|}\mathrm{d}V\),

kde \(V\) je celkový objem, přes který se integruje.

Tento potenciál je definován ve všech bodech prostoru, tedy také v bodech, ve kterých je hustota náboje \(\rho\) nenulová. Tím se potenciál spojitě rozloženého náboje odlišuje od potenciálu soustavy bodových nábojů. Tento potenciál je navíc všude spojitý a má ve všech bodech prostoru parciální derivaci alespoň prvního řádu, což v souvislosti s intenzitou elektrického pole znamená, že také intenzita pole daná tímto vztahem je definována ve všech bodech prostoru včetně bodů, v nichž je hustota náboje nenulová.

Potenciál plošně rozloženého náboje lze vyjádřit jako

\(\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon}\int_S \frac{\sigma(\boldsymbol{r}^\prime)}{|\boldsymbol{r}-\boldsymbol{r}^\prime|}\mathrm{d}S\),

kde \(\sigma\) je plošná hustota elektrického náboje.


Pro potenciál lineárně rozloženého náboje platí

\(\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon}\int_l \frac{\tau(\boldsymbol{r}^\prime)}{|\boldsymbol{r}-\boldsymbol{r}^\prime|}\mathrm{d}l\),

kde \(\tau\) je lineární hustota elektrického náboje.

Poissonova rovnice

Dosadíme-li do Gaussova zákona elektrostatiky pro spojitě rozložený náboj místo intenzity elektrického pole potenciál, dostaneme

\(\operatorname{div}\boldsymbol{E} = -\operatorname{div}\,\operatorname{grad}\,\varphi = \frac{\rho}{\varepsilon_0}\)

Využijeme-li z vektorové analýzy tzv. Laplaceův operátor \(\Delta = \operatorname{div}\,\operatorname{grad}\), lze předchozí vztah zapsat ve tvaru Poissonovy rovnice

\(\Delta\varphi = -\frac{\rho}{\varepsilon_0}\)

Tato rovnice je platná ve všech bodech prostoru, v nichž platí Gaussův zákon.

Pokud je v některých bodech prostoru objemová hustota nulová, tzn. \(\rho=0\), zjednoduší se předchozí rovnice na rovnici, která se označuje jako rovnice Laplaceova

\(\Delta\varphi = 0\)

Vlastnosti

Na základě principu superpozice lze odvodit výraz pro potenciál soustavy \(n\) bodových nábojů \(Q_1\)\(Q_n\), jejichž polohové vektory jsou \(\boldsymbol{r}_1\)\(\boldsymbol{r}_n\).

\(\varphi(\boldsymbol{r}) = \frac{1}{4\pi\varepsilon}\sum_{i=1}^n\frac{Q_i}{|\boldsymbol{r}-\boldsymbol{r}_i|} + \varphi_0\)

Potenciál jednoho z bodových nábojů \(Q_i\) ze soustavy nábojů \(Q_1\)\(Q_n\) vzhledem k ostatním nábojům soustavy lze určit podle principu superpozice jako

\(\varphi_i = \frac{1}{4\pi\varepsilon}\sum_{j\ne i}\frac{Q_j}{|\boldsymbol{r}_i-\boldsymbol{r}_j|}\)

Záporný gradient potenciálu je roven intenzitě elektrického pole, tzn.

\(\boldsymbol{E}(\boldsymbol{r}) = -\operatorname{grad}\,\varphi(\boldsymbol{r})\)

Potenciál elektrostatického pole lze podle chápat jako potenciální energii jednotkového náboje. Položíme-li potenciál v nekonečnu roven nule, tzn. \(\varphi_0=0\), potom lze podle předchozího vztahu psát

\(\varphi(\boldsymbol{r}) = -\int_\infty^\boldsymbol{r} \boldsymbol{E}\cdot\mathrm{d}\boldsymbol{l}\)

Rozdíl potenciálů je roven napětí mezi danými body.

Plocha, na níž si potenciál zachovává svoji hodnotu, tzn. \(\varphi=\mbox{konst}\), se nazývá ekvipotenciální plocha.

Siločáry jsou vždy kolmé k ekvipotenciálním plochám. To lze ukázat diferenciací vztahu \(\varphi=\mbox{konst}\), tzn.

\(\mathrm{d}\varphi = \frac{\partial\varphi}{\partial x}\mathrm{d}x + \frac{\partial\varphi}{\partial y}\mathrm{d}y + \frac{\partial\varphi}{\partial z}\mathrm{d}z = -(E_x\mathrm{d}x+E_y\mathrm{d}y+E_z\mathrm{d}z) = -\boldsymbol{E}\cdot\mathrm{d}\boldsymbol{r} = 0\),

kde \(\mathrm{d}\boldsymbol{r}\) leží v tečné rovině k ekvipotenciální ploše. Vektory \(\boldsymbol{E}\) a \(\mathrm{d}\boldsymbol{r}\) jsou tedy vzájemně kolmé, tzn. \(\boldsymbol{E}\) je kolmé k ekvipotenciální ploše.

Související články

Externí odkazy

Commons nabízí fotografie, obrázky a videa k tématu
Elektrický potenciál