The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Ideál (teorie okruhů)

Z Multimediaexpo.cz

Ideál je matematický pojem z oblasti algebry označující podmnožinu nějakého okruhu s jistými „dobrými“ vlastnostmi.

Obsah

Definice

Množina \(\emptyset \neq I \subseteq R\), kde R je okruh, se nazývá levý resp. pravý ideál, má-li následující vlastnosti:

  • pro každé \(a,b \in I\) je také \(a-b \in I\)
  • pro každé \(a \in I\) a každé \(r \in R\) je také \(r\cdot a \in I\) resp. \(a\cdot r \in I\)

Je-li ideál zároveň levý i pravý, nazývá se oboustranný ideál, nebo prostě jen ideál.


Nechť (R, +, •) je okruh, M je libovolná podmnožina množiny R. Potom průnik všech ideálů v R, které obsahují množinu M, je ideál v R, který se nazývá ideálem generovaným množinou a značí se [M]. Množina M se nazývá systém generátorů ideálu [M] a její prvky generátory tohoto ideálu.

Prázdná množina generuje v libovolném okruhu nulový ideál R.

Příklady ideálů

  • V každém okruhu R jsou množiny {0} a R ideály. Tyto ideály se nazývají triviální ideály v R. Ideál, který není triviální se nazývá netriviální nebo také vlastní.
  • Každá podmnožina tvaru \((a)=\{a\cdot r;r\in R\}\) je ideál v R. Ideály tvaru (a) se nazývají hlavní ideály v R.
  • V okruhu celých čísel je množina všech sudých čísel ideálem, konkrétně hlavním ideálem (2).
  • Libovolný podokruh komutativního okruhu nemusí být jeho ideálem. Například v okruhu racionálních čísel (Q,+,•) tvoří celá čísla podokruh (Z,+,•). Ten však není ideálem v Q, neboť nesplňuje podmínku: pro každé \(a \in I\) a každé \(r \in R\) je také \(r\cdot a \in I\) resp. \(a\cdot r \in I\). Stačí volit třeba \( a = 3, r = { \frac{1}{2}} \), pak \(3 \in Z\) a \( 3 \cdot { \frac{1}{2}}={ \frac{3}{2}} \notin Z \)

Operace s ideály

  • průnik ideálů I,J je ideál \(I\cap J\), který je největším ideálem, obsaženém v obou ideálech I,J.
  • součet ideálů I,J je ideál \(\,I+J=\{i+j; i\in I, j\in J\}\), který je nejmenším ideálem obsahujícím oba ideály I,J.
  • součin ideálů I,J je ideál \(I \cdot J = \{\sum_{k=1}^{n}a_k \cdot b_k ; n\in N, a_k \in I, b_k \in J\}\)

Vlastnosti

  • Ideál I v okruhu R se nazývá maximální ideál, je-li \(I \neq R\) a pro každý ideál J, že \(I\subseteq J\), je I = J nebo J = R.
  • Ideál I v okruhu R se nazývá prvoideál, jestliže pro každé \(a,b \in R\) takové, že \(a\cdot b \in I\), je buďto \(a \in I\) nebo \(b \in I\).
  • Jsou-li \(a_1, a_2, \) … , \(a_k\) libovolné prvky z ideálu I v okruhu R, je každá jejich lineární kombinace s koeficienty z R prvkem ideálu I, tj. \((\forall r_1, r_2, \)… , \( r_k \in R)\) \(a_1r_1 + a_2r_2 + \)\( + a_kr_k \in I\).


Příklad:

V okruhu celých čísel Z máme určit ideál I = [96, 14]. Snažíme se v tomto ideálu najít nenulové číslo s co nejmenší absolutní hodnotou. Musí být 1 • 96 + (- 6) •14 = 12 ∈ I a též 1 • 14 + (- 1) •12 = 2 ∈ I . Podle druhé podmínky (viz výše) obsahuje I všechny celočíselné násobky čísla 2, tj. všechna sudá čísla. Protože podle definice ideálu (Podmnožina I okruhu R je ideálem v právě tehdy, když je neprázdná a platí pro ni podmínky viz. výše) množina všech sudých čísel tvoří zřejmě ideál v Z, je I = {..., -6, -4, -2, 0, 2, 4, 6, ...}.

Týž ideál může mít různé systémy generátorů. Např. ideál I z předchozího příkladu je generován číslem 2, tj. I = [2], a též například I = [6, 8, -10].


Platí věta: Každý maximální ideál je prvoideál. Opačné tvrzení v obecném případě neplatí, tj. existují prvoideály, které nejsou maximální. Pokud však R je číselný okruh (tj. podokruh okruhu komplexních algebraických celých čísel), je každý prvoideál v R maximálním ideálem.

  • Ideály jsou právě ty množiny, faktorizací podle nichž vznikne z okruhu opět okruh.
  • Prvoideály jsou právě ty množiny, faktorizací podle nichž vznikne z okruhu obor integrity.
  • Maximální ideály jsou právě ty množiny, faktorizací podle nichž vznikne těleso.

Věta

Nechť R je okruh s jednotkovým prvkem a nechť \( M = \{a_1, a_2, \)\( , a_k \sube R\}\). Pak ideál [M] se skládá právě ze všech prvků tvaru \((\forall r_1, r_2, \)… , \( r_k \in R)\) \(a_1r_1 + a_2r_2 + \)\( + a_kr_k \in I\), tj. [M] = I, kde \(I = \{ a_1r_1 + a_2r_2 + \)\( + a_kr_k; r_1, r_2, \)\( , r_k\in R\}\).


Příklad užití této věty

V okruhu Z[x] polynomů jedné neurčité s celočíselnými koeficienty máme sestrojit ideál [x, 2]. Podle věty výše (v Z[x] existuje jednotkový prvek) se tento ideál skládá ze všech prvků tvaru: \(x \cdot f_1(x) + 2 \cdot f_2(x) \) kde \(f_1(x),f_2(x) \in Z[x]\).

Tedy [x, 2] je množina všech polynomů \(a_0 + a_1x + \)\( + a_x x^n \in Z[x]\), jejíž člen a0 je sudé číslo. Ideál [x, 2] je tudíž vlastní podmnožina v Z[x].

Literatura

BLAŽEK, Jaroslav, Milan KOMAN a Blanka VOJTÁŠKOVÁ. Algebra a teoretická aritmetika. 1. vyd. Praha: Státní pedagogické nakladatelství, 1985, 258 s. Učebnice pro vysoké školy (Státní pedagogické nakladatelství).

Související články