V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Koeficient špičatosti

Z Multimediaexpo.cz

Verze z 14. 8. 2022, 14:52; Sysop (diskuse | příspěvky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Koeficient špičatosti (excesu) je charakteristika rozdělení náhodné veličiny, která porovnává dané rozdělení s normálním rozdělením pravděpodobnosti.

Koeficient špičatosti se obvykle označuje \(\gamma_2\).

Obsah

Definice

Koeficient špičatosti je definován vztahem

\(\gamma_2 = \frac{\mu_4}{\sigma^4} - 3 = \frac{\operatorname{E}[X-\operatorname{E}(X)]^4}{\left(\operatorname{var}\,X\right)^2} - 3\),

kde \(\mu_4\) je čtvrtý centrální moment, \(\sigma\) je směrodatná odchylka, \(\operatorname{E}(X)\) označuje střední hodnotu a \(\operatorname{var}\,X\) je rozptyl.

Vlastnosti

Normální rozdělení má špičatost nula. Kladná špičatost značí, že většina hodnot náhodné veličiny leží blízko její střední hodnoty a hlavní vliv na rozptyl mají málo pravděpodobné odlehlé hodnoty. Křivka hustoty je špičatější, nežli u normálního rozdělení. Záporná špičatost značí, že rozdělení je rovnoměrnější a jeho křivka hustoty je plošší nežli u normálního rozdělení.

Špičatost rozdělení nezávisí na lineární transformaci náhodné veličiny, je tedy např. stejná pro všechna normální rozdělení.

Výběrový koeficient špičatosti

Výběrový koeficient špičatosti je definován vzorcem

\(g_2 = \frac{m_4}{m_2^2} = n\frac{\sum_{i=1}^n (x_i - \overline{x})^4}{\left(\sum_{i=1}^n (x_i - \overline{x})^2 \right)^2}\),

kde \(\overline{x}\) je výběrový průměr, \(m_2\) je výběrový rozptyl a \(m_4\) je čtvrtý výběrový centrální moment.

Tento odhad je vychýlený. Méně vychýlené odhady dostaneme, když místo výběrových centrálních momentů použijeme nevychýlené odhady centrálních momentů:[1]

\( \begin{align} G_2 = \frac{M_4}{M_2^2} &= \frac{(n-1)}{(n-2)(n-3)}\left((n+1)g_2+6\right) \\ b_2 = \frac{m_4}{M_2^2} &= \left(\frac{n-1}{n}\right)^2g_2 - 3 \end{align} \)

Pro rozptyly těchto odhadů platí \(\operatorname{var}\,b_2 < \operatorname{var}\,g_2 < \operatorname{var}\,G_2\).

Reference

  1. . Dostupné online.