Situace po úderu Kyjeva proti ruským strategickým letadlům je extrémně vážná !!
Prezident Ruska Vladimir Putin je ruskou legislativou plně zmocněn proti Ukrajině nařídit
provedení neomezeného množství jaderných úderů, a proti jakýmkoliv cílům !!

Hyperbolometrická funkce

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (Nahrazení textu „<math>“ textem „<big>\(“)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
Řádka 2: Řádka 2:
== Argument hyperbolického sinu (argsinh x) ==
== Argument hyperbolického sinu (argsinh x) ==
-
Funkce <big>\(y=\arg\sinh x</math>
+
Funkce <big>\(y=\arg\sinh x\)</big>
=== Definiční obor ===
=== Definiční obor ===
-
:<big>\( x \in \mathbb{R}</math>
+
:<big>\( x \in \mathbb{R}\)</big>
=== Obor hodnot ===
=== Obor hodnot ===
-
:<big>\( y \in \mathbb{R}</math>
+
:<big>\( y \in \mathbb{R}\)</big>
=== Parita ===
=== Parita ===
Řádka 14: Řádka 14:
=== Identita ===
=== Identita ===
-
:<big>\(\arg\sinh x=\ln(x+\sqrt{x^2+1})</math>
+
:<big>\(\arg\sinh x=\ln(x+\sqrt{x^2+1})\)</big>
== Argument hyperbolického kosinu (argcosh x) ==
== Argument hyperbolického kosinu (argcosh x) ==
-
Funkce <big>\(y=\arg\cosh x</math>
+
Funkce <big>\(y=\arg\cosh x\)</big>
=== Definiční obor ===
=== Definiční obor ===
-
:<big>\(1 \le x <\infty</math>
+
:<big>\(1 \le x <\infty\)</big>
=== Obor hodnot ===
=== Obor hodnot ===
-
:<big>\(0 \le y <\infty</math>
+
:<big>\(0 \le y <\infty\)</big>
=== Parita ===
=== Parita ===
Řádka 29: Řádka 29:
=== Identita ===
=== Identita ===
-
:<big>\(\arg\cosh x=\ln(x+\sqrt{x^2-1})</math>
+
:<big>\(\arg\cosh x=\ln(x+\sqrt{x^2-1})\)</big>
== Argument hyperbolického tangens (argtanh x) ==
== Argument hyperbolického tangens (argtanh x) ==
-
Funkce <big>\(y=\arg\tanh x</math>
+
Funkce <big>\(y=\arg\tanh x\)</big>
=== Definiční obor ===
=== Definiční obor ===
-
:<big>\(-1 < x <1</math> resp. <big>\(|x|<1</math>
+
:<big>\(-1 < x <1\)</big> resp. <big>\(|x|<1\)</big>
=== Obor hodnot ===
=== Obor hodnot ===
-
:<big>\( y \in \mathbb{R}</math>
+
:<big>\( y \in \mathbb{R}\)</big>
=== Parita ===
=== Parita ===
Řádka 44: Řádka 44:
=== Identita ===
=== Identita ===
-
:<big>\(\arg\tanh x=\frac{1}{2} \ln\frac{1+x}{1-x}</math>
+
:<big>\(\arg\tanh x=\frac{1}{2} \ln\frac{1+x}{1-x}\)</big>
== Argument hyperbolického kotangens (argcoth x) ==
== Argument hyperbolického kotangens (argcoth x) ==
-
Funkce <big>\(y=\arg\coth x</math>
+
Funkce <big>\(y=\arg\coth x\)</big>
=== Definiční obor ===
=== Definiční obor ===
-
:<big>\(|x|>1</math>
+
:<big>\(|x|>1\)</big>
=== Obor hodnot ===
=== Obor hodnot ===
-
:<big>\(y=\mathbb{R}-\{0\}</math>
+
:<big>\(y=\mathbb{R}-\{0\}\)</big>
=== Parita ===
=== Parita ===
Řádka 59: Řádka 59:
=== Identita ===
=== Identita ===
-
:<big>\(\arg\coth x=\frac{1}{2} \ln\frac{x+1}{x-1}</math>
+
:<big>\(\arg\coth x=\frac{1}{2} \ln\frac{x+1}{x-1}\)</big>
== Identity ==
== Identity ==
{| border="0"
{| border="0"
|-
|-
-
| <big>\(\arg\sinh x</math> || <big>\(=\arg\cosh \sqrt{x^2+1}\ \ \ \ \ \ \ (x \ge 0)</math>
+
| <big>\(\arg\sinh x\)</big> || <big>\(=\arg\cosh \sqrt{x^2+1}\ \ \ \ \ \ \ (x \ge 0)\)</big>
|-
|-
-
|  || <big>\(=-\arg\cosh \sqrt{x^2+1}\ \ \ \ \ (x < 0)</math>
+
|  || <big>\(=-\arg\cosh \sqrt{x^2+1}\ \ \ \ \ (x < 0)\)</big>
|-
|-
-
|  || <big>\(=\arg\tanh \frac{x}{\sqrt{x^2+1}}</math>
+
|  || <big>\(=\arg\tanh \frac{x}{\sqrt{x^2+1}}\)</big>
|}
|}
-
<big>\(\arg\cosh x=\arg\sinh \sqrt{x^2-1}=\arg\tanh \frac{\sqrt{x^2-1}}{x}\ \ \ \ \ (x \ge 0)</math>
+
<big>\(\arg\cosh x=\arg\sinh \sqrt{x^2-1}=\arg\tanh \frac{\sqrt{x^2-1}}{x}\ \ \ \ \ (x \ge 0)\)</big>
-
<big>\(\arg\tanh x=\sinh \frac{x}{\sqrt{1-x^2}}\ \ \ \ \ (x \ge 0)</math>
+
<big>\(\arg\tanh x=\sinh \frac{x}{\sqrt{1-x^2}}\ \ \ \ \ (x \ge 0)\)</big>
{| border="0"
{| border="0"
|-
|-
-
| <big>\(\arg\tanh x</math> || <big>\(=\arg\sinh \frac{x}{\sqrt{1-x^2}}\ \ \ \ \ \ \ (|x|<1)</math>
+
| <big>\(\arg\tanh x\)</big> || <big>\(=\arg\sinh \frac{x}{\sqrt{1-x^2}}\ \ \ \ \ \ \ (|x|<1)\)</big>
|-
|-
-
|  || <big>\(=\arg\cosh \frac{1}{\sqrt{1-x^2}}\ \ \ \ \ (0\le x < 1)</math>
+
|  || <big>\(=\arg\cosh \frac{1}{\sqrt{1-x^2}}\ \ \ \ \ (0\le x < 1)\)</big>
|-
|-
-
|  || <big>\(=-\arg\cosh \frac{1}{\sqrt{1-x^2}}\ \ \ \ \ (-1< x \le 0)</math>
+
|  || <big>\(=-\arg\cosh \frac{1}{\sqrt{1-x^2}}\ \ \ \ \ (-1< x \le 0)\)</big>
|-
|-
-
|  || <big>\(=\arg\coth \frac{1}{x}\ \ \ \ \ (-1< x < 1,x \not= 0)</math>
+
|  || <big>\(=\arg\coth \frac{1}{x}\ \ \ \ \ (-1< x < 1,x \not= 0)\)</big>
|}
|}
{| border="0"
{| border="0"
|-
|-
-
| <big>\(\arg\coth x</math> || <big>\(=\arg\sinh \frac{1}{\sqrt{x^2-1}}\ \ \ \ \ (x>1)</math>
+
| <big>\(\arg\coth x\)</big> || <big>\(=\arg\sinh \frac{1}{\sqrt{x^2-1}}\ \ \ \ \ (x>1)\)</big>
|-
|-
-
|  || <big>\(=-\arg\sinh \frac{1}{\sqrt{x^2-1}}\ \ \ \ \ (x < -1)</math>
+
|  || <big>\(=-\arg\sinh \frac{1}{\sqrt{x^2-1}}\ \ \ \ \ (x < -1)\)</big>
|-
|-
-
|  || <big>\(=\arg\cosh \frac{x}{\sqrt{x^2-1}}\ \ \ \ \ (x > 1)</math>
+
|  || <big>\(=\arg\cosh \frac{x}{\sqrt{x^2-1}}\ \ \ \ \ (x > 1)\)</big>
|-
|-
-
|  || <big>\(=\arg\tanh \frac{1}{x}\ \ \ \ \ (|x|>1)</math>
+
|  || <big>\(=\arg\tanh \frac{1}{x}\ \ \ \ \ (|x|>1)\)</big>
|}
|}
-
<big>\(\arg\sinh x\pm \arg\sinh y=\arg\sinh (x\sqrt{1+y^2}\pm y\sqrt{1+x^2})</math>
+
<big>\(\arg\sinh x\pm \arg\sinh y=\arg\sinh (x\sqrt{1+y^2}\pm y\sqrt{1+x^2})\)</big>
-
<big>\(\arg\cosh x\pm \arg\cosh y=\arg\cosh (xy \pm \sqrt{(1+x^2)(y^2-1)})\ \ \ \ \ (x\ge1,y\ge1)</math>
+
<big>\(\arg\cosh x\pm \arg\cosh y=\arg\cosh (xy \pm \sqrt{(1+x^2)(y^2-1)})\ \ \ \ \ (x\ge1,y\ge1)\)</big>
-
<big>\(\arg\tanh x\pm \arg\tanh y=\arg\tanh \frac{x\pm y}{1\pm xy}\ \ \ \ \ (|x|<1,|y|<1)</math>
+
<big>\(\arg\tanh x\pm \arg\tanh y=\arg\tanh \frac{x\pm y}{1\pm xy}\ \ \ \ \ (|x|<1,|y|<1)\)</big>
== Derivace ==
== Derivace ==
-
<big>\((\arg\sinh x)'=\frac{1}{\sqrt{1+x^2}}</math>
+
<big>\((\arg\sinh x)'=\frac{1}{\sqrt{1+x^2}}\)</big>
-
<big>\((\arg\cosh x)'=\frac{1}{\sqrt{x^2-1}}\ \ \ \ \ (x>1)</math>
+
<big>\((\arg\cosh x)'=\frac{1}{\sqrt{x^2-1}}\ \ \ \ \ (x>1)\)</big>
-
<big>\((\arg\tanh x)'=\frac{1}{1-x^2}\ \ \ \ \ (|x|<1)</math>
+
<big>\((\arg\tanh x)'=\frac{1}{1-x^2}\ \ \ \ \ (|x|<1)\)</big>
-
<big>\((\arg\coth x)'=\frac{1}{1-x^2}\ \ \ \ \ (|x|>1)</math>
+
<big>\((\arg\coth x)'=\frac{1}{1-x^2}\ \ \ \ \ (|x|>1)\)</big>
== Integrál ==
== Integrál ==
-
<big>\(\int \frac{1}{\sqrt{1+x^2}}{\rm d}x=\arg\sinh x+C</math>
+
<big>\(\int \frac{1}{\sqrt{1+x^2}}{\rm d}x=\arg\sinh x+C\)</big>
-
<big>\(\int \frac{1}{\sqrt{x^2-1}}{\rm d}x=\arg\cosh x+C\ \ \ \ \ (x>1)</math>
+
<big>\(\int \frac{1}{\sqrt{x^2-1}}{\rm d}x=\arg\cosh x+C\ \ \ \ \ (x>1)\)</big>
{| border="0"
{| border="0"
|-
|-
-
| <big>\(\int \frac{1}{1-x^2}{\rm d}x</math> || <big>\(=\arg\tanh x+C\ \ \ \ \ (|x| < 1)</math>
+
| <big>\(\int \frac{1}{1-x^2}{\rm d}x\)</big> || <big>\(=\arg\tanh x+C\ \ \ \ \ (|x| < 1)\)</big>
|-
|-
-
| || <big>\(=\arg\coth x+C\ \ \ \ \ (|x| > 1)</math>
+
| || <big>\(=\arg\coth x+C\ \ \ \ \ (|x| > 1)\)</big>
|}
|}

Aktuální verze z 14. 8. 2022, 14:52

Hyperbolometrické funkce jsou funkce inverzní k funkcím hyperbolickým. Jedná se o funkce argument hyperbolického sinu (argsinh x), argument hyperbolického kosinu (argcosh x), argument hyperbolického tangens (argtanh x) a argument hyperbolického kotangens (argcoth x).

Obsah

[skrýt]

Argument hyperbolického sinu (argsinh x)

Funkce y=argsinhx

Definiční obor

xR

Obor hodnot

yR

Parita

Lichá (inverzní funkce k liché funkci je lichá funkce)

Identita

argsinhx=ln(x+x2+1)

Argument hyperbolického kosinu (argcosh x)

Funkce y=argcoshx

Definiční obor

1x<

Obor hodnot

0y<

Parita

Ani lichá ani sudá

Identita

argcoshx=ln(x+x21)

Argument hyperbolického tangens (argtanh x)

Funkce y=argtanhx

Definiční obor

1<x<1 resp. |x|<1

Obor hodnot

yR

Parita

Lichá (inverzní funkce k liché funkci je lichá funkce)

Identita

argtanhx=12ln1+x1x

Argument hyperbolického kotangens (argcoth x)

Funkce y=argcothx

Definiční obor

|x|>1

Obor hodnot

y=R{0}

Parita

Lichá (inverzní funkce k liché funkci je lichá funkce)

Identita

argcothx=12lnx+1x1

Identity

argsinhx =argcoshx2+1       (x0)
=argcoshx2+1     (x<0)
=argtanhxx2+1

argcoshx=argsinhx21=argtanhx21x     (x0)

argtanhx=sinhx1x2     (x0)

argtanhx x|<1)\)
=argcosh11x2     (0x<1)
=argcosh11x2     (1<x0)
=argcoth1x     (1<x<1,x0)
argcothx =argsinh1x21     (x>1)
=argsinh1x21     (x<1)
=argcoshxx21     (x>1)
x|>1)\)

argsinhx±argsinhy=argsinh(x1+y2±y1+x2)

argcoshx±argcoshy=argcosh(xy±(1+x2)(y21))     (x1,y1)

argtanhx±argtanhy=argtanhx±y1±xy     (|x|<1,|y|<1)

Derivace

(argsinhx)=11+x2

(argcoshx)=1x21     (x>1)

(argtanhx)=11x2     (|x|<1)

(argcothx)=11x2     (|x|>1)

Integrál

11+x2dx=argsinhx+C

1x21dx=argcoshx+C     (x>1)

11x2dx x| < 1)\)
x| > 1)\)

Externí odkazy