V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Trojúhelníková nerovnost

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Masivní vylepšení)
m (Nahrazení textu „<math>“ textem „<big>\(“)
Řádka 3: Řádka 3:
== Reálná a komplexní čísla ==
== Reálná a komplexní čísla ==
-
V [[Těleso (algebra)|tělese]] reálných a [[Komplexní číslo|komplexních čísel]] platí trojúhelníková nerovnost pro [[Absolutní hodnota|absolutní hodnoty]] libovolných čísel <math>x</math> a <math>y</math> ve tvaru
+
V [[Těleso (algebra)|tělese]] reálných a [[Komplexní číslo|komplexních čísel]] platí trojúhelníková nerovnost pro [[Absolutní hodnota|absolutní hodnoty]] libovolných čísel <big>\(x</math> a <big>\(y</math> ve tvaru
-
<math>|x + y| \leq |x| + |y|</math>
+
<big>\(|x + y| \leq |x| + |y|</math>
=== Odvození trojúhelníkové nerovnosti v reálných číslech ===
=== Odvození trojúhelníkové nerovnosti v reálných číslech ===
Řádka 11: Řádka 11:
Pro absolutní hodnotu reálného čísla vždy platí
Pro absolutní hodnotu reálného čísla vždy platí
-
<math>x \leq |x|</math> a zároveň
+
<big>\(x \leq |x|</math> a zároveň
-
<math>-x \leq |x|</math>.
+
<big>\(-x \leq |x|</math>.
-
Použijeme-li obě tyto nerovnosti současně pro dvě čísla <math>x</math> a <math>y</math> a sečteme-li je, dostáváme
+
Použijeme-li obě tyto nerovnosti současně pro dvě čísla <big>\(x</math> a <big>\(y</math> a sečteme-li je, dostáváme
-
<math>x + y \leq |x| + |y|</math> a
+
<big>\(x + y \leq |x| + |y|</math> a
-
<math>- x - y \leq |x| + |y|</math>.
+
<big>\(- x - y \leq |x| + |y|</math>.
-
Z definice absolutní hodnoty <math>|x + y|</math> víme, že může nabývat jen hodnot <math>x + y</math> nebo <math>- x - y</math>. Tedy kombinací posledních dvou nerovností dostáváme trojúhelníkovou nerovnost.
+
Z definice absolutní hodnoty <big>\(|x + y|</math> víme, že může nabývat jen hodnot <big>\(x + y</math> nebo <big>\(- x - y</math>. Tedy kombinací posledních dvou nerovností dostáváme trojúhelníkovou nerovnost.
== Normovaný vektorový prostor ==
== Normovaný vektorový prostor ==
-
V [[Normovaný vektorový prostor|normovaném vektorovém prostoru]] <math>V</math> s [[Norma|normou]] <math>\| \cdot \|</math> má trojúhelníková nerovnost tvar
+
V [[Normovaný vektorový prostor|normovaném vektorovém prostoru]] <big>\(V</math> s [[Norma|normou]] <big>\(\| \cdot \|</math> má trojúhelníková nerovnost tvar
-
<math>\|x + y\| \leq \|x\| + \|y\|</math>
+
<big>\(\|x + y\| \leq \|x\| + \|y\|</math>
-
pro každé dva [[vektor]]y <math>x</math> a <math>y</math> z <math>V</math>.
+
pro každé dva [[vektor]]y <big>\(x</math> a <big>\(y</math> z <big>\(V</math>.
=== L<sup>p</sup> prostory ===
=== L<sup>p</sup> prostory ===
Řádka 37: Řádka 37:
== Metrický prostor ==
== Metrický prostor ==
-
V [[Metrický prostor|metrickém prostoru]] <math>M</math> s [[Metrika|metrikou]] <math>d</math> má trojúhelníková nerovnost tvar:
+
V [[Metrický prostor|metrickém prostoru]] <big>\(M</math> s [[Metrika|metrikou]] <big>\(d</math> má trojúhelníková nerovnost tvar:
-
<math>d(x,z) \leq d(x, y) + d(y,z) </math>
+
<big>\(d(x,z) \leq d(x, y) + d(y,z) </math>
-
to jest, že vzdálenost <math>x</math> a <math>z</math> není větší než součet vzdálenosti z <math>x</math> do <math>y</math> a vzdálenosti z <math>y</math> do <math>z</math>.
+
to jest, že vzdálenost <big>\(x</math> a <big>\(z</math> není větší než součet vzdálenosti z <big>\(x</math> do <big>\(y</math> a vzdálenosti z <big>\(y</math> do <big>\(z</math>.
== Důsledky ==
== Důsledky ==
Řádka 47: Řádka 47:
Úpravou trojúhelníkové nerovnosti dostáváme jiný vhodný tvar
Úpravou trojúhelníkové nerovnosti dostáváme jiný vhodný tvar
-
<math>\left| |x| - |y| \right| \leq |x - y|</math> pro absolutní hodnoty v reálných a komplexních číslech,
+
<big>\(\left| |x| - |y| \right| \leq |x - y|</math> pro absolutní hodnoty v reálných a komplexních číslech,
-
<math>\left| \|x\| - \|y\| \right| \leq  \|x - y\|</math> pro normované vektorové prostory a
+
<big>\(\left| \|x\| - \|y\| \right| \leq  \|x - y\|</math> pro normované vektorové prostory a
-
<math>\left| d(x, y) - d(x,z) \right| \leq  d(y,z)</math> pro metrické prostory.
+
<big>\(\left| d(x, y) - d(x,z) \right| \leq  d(y,z)</math> pro metrické prostory.
-
Z těchto tvarů už plyne, že [[absolutní hodnota]], norma i [[Funkce (matematika)|funkce]] <math>d(x, \cdot)</math> jsou [[Lipschitzovská funkce|Lipschitzovské]], tedy i [[Spojitá funkce|spojité funkce]].
+
Z těchto tvarů už plyne, že [[absolutní hodnota]], norma i [[Funkce (matematika)|funkce]] <big>\(d(x, \cdot)</math> jsou [[Lipschitzovská funkce|Lipschitzovské]], tedy i [[Spojitá funkce|spojité funkce]].

Verze z 14. 8. 2022, 14:50

Trojúhelníková nerovnost v matematice tvrdí, že součet délek dvou stran trojúhelníku není nikdy menší než délka strany třetí. Obecněji to znamená, že cesta z A do B a pak do C není kratší než cesta z A přímo do C. Tato nerovnost je větou v mnoha oblastech matematiky, např. reálných číslech, Euklidovském prostoru, Lp prostorech. Slouží jako axiom pro zavedení pojmu normovaný vektorový prostor a metrický prostor.

Obsah

Reálná a komplexní čísla

V tělese reálných a komplexních čísel platí trojúhelníková nerovnost pro absolutní hodnoty libovolných čísel \(x</math> a \(y</math> ve tvaru

\(|x + y| \leq |x| + |y|</math>

Odvození trojúhelníkové nerovnosti v reálných číslech

Pro absolutní hodnotu reálného čísla vždy platí

\(x \leq |x|</math> a zároveň

\(-x \leq |x|</math>.

Použijeme-li obě tyto nerovnosti současně pro dvě čísla \(x</math> a \(y</math> a sečteme-li je, dostáváme

\(x + y \leq |x| + |y|</math> a

\(- x - y \leq |x| + |y|</math>.

Z definice absolutní hodnoty \(|x + y|</math> víme, že může nabývat jen hodnot \(x + y</math> nebo \(- x - y</math>. Tedy kombinací posledních dvou nerovností dostáváme trojúhelníkovou nerovnost.

Normovaný vektorový prostor

V normovaném vektorovém prostoru \(V</math> s normou \(\| \cdot \|</math> má trojúhelníková nerovnost tvar

\(\|x + y\| \leq \|x\| + \|y\|</math>

pro každé dva vektory \(x</math> a \(y</math> z \(V</math>.

Lp prostory

V Lp prostorech se trojúhelníkové nerovnosti říká Minkowského nerovnost. Díky ní se ukazuje, že Lp prostory jsou normované vektorové prostory.

Metrický prostor

V metrickém prostoru \(M</math> s metrikou \(d</math> má trojúhelníková nerovnost tvar:

\(d(x,z) \leq d(x, y) + d(y,z) </math>

to jest, že vzdálenost \(x</math> a \(z</math> není větší než součet vzdálenosti z \(x</math> do \(y</math> a vzdálenosti z \(y</math> do \(z</math>.

Důsledky

Úpravou trojúhelníkové nerovnosti dostáváme jiný vhodný tvar

\(\left| |x| - |y| \right| \leq |x - y|</math> pro absolutní hodnoty v reálných a komplexních číslech,

\(\left| \|x\| - \|y\| \right| \leq \|x - y\|</math> pro normované vektorové prostory a

\(\left| d(x, y) - d(x,z) \right| \leq d(y,z)</math> pro metrické prostory.

Z těchto tvarů už plyne, že absolutní hodnota, norma i funkce \(d(x, \cdot)</math> jsou Lipschitzovské, tedy i spojité funkce.