Nová soutěž o nejlepší webovou stránku !
Neváhejte a začněte rychle soutěžit o lákavé ceny !

Zákon zachování hybnosti

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (1 revizi)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
(Nejsou zobrazeny 2 mezilehlé verze.)
Řádka 1: Řádka 1:
-
{{Wikipedia-cs|Zákon zachování hybnosti|700}}
+
'''Zákon zachování hybnosti''' tvrdí, že [[hybnost]] [[izolovaná soustava|izolované soustavy]] [[těleso|těles]] se zachovává.
 +
== Formulace ==
 +
Zákon zachování hybnosti lze vyjádřit slovy:
 +
:'''Celková [[hybnost]] [[izolovaná soustava|izolované soustavy]] [[Těleso|těles]] se nemění.
 +
 +
=== Odvození ===
 +
V [[izolovaná soustava|izolované soustavě]] je celková hybnost v nějakém [[čas]]ovém okamžiku <big>\(t_0\)</big> určena [[vektorový součet|vektorovým součtem]] hybností jednotlivých [[těleso|těles]], např. v případě dvou těles je to <big>\(\mathbf{p}=\mathbf{p}_1+\mathbf{p}_2\)</big>. V takovém případě se po uplynutí času <big>\(\Delta t\)</big> hybnost prvního tělesa vlivem [[síla|síly]] <big>\(\mathbf{F}_1\)</big> změní o <big>\(\Delta\mathbf{p}_1\)</big> a hybnost druhého tělesa se působením síly <big>\(\mathbf{F}_2\)</big> změní o <big>\(\Delta\mathbf{p}_2\)</big>.
 +
 +
Celková změna hybnosti je tedy podle [[2. Newtonův pohybový zákon|2. Newtonova pohybového zákona]] dána vztahem
 +
:<big>\(\Delta\mathbf{p} = \Delta\mathbf{p}_1 + \Delta\mathbf{p}_2 = \mathbf{F}_1\Delta t+\mathbf{F}_2\Delta t = \left(\mathbf{F}_1+\mathbf{F}_2\right)\Delta t\)</big>
 +
Poněvadž se však jedná o síly vzájemného působení (tedy [[vnitřní síla|vnitřní síly]], což jsou jediné síly působící v izolované soustavě), je podle [[3. Newtonův pohybový zákon|třetího Newtonova pohybového zákona]] <big>\(\mathbf{F}_1=-\mathbf{F}_2\)</big> a jejich vektorový součet je [[nula|nulový]], což znamená
 +
:<big>\(\Delta\mathbf{p}=0\)</big>
 +
 +
Pokud je změna hybnosti nulová, pak tedy zůstává celková hybnost soustavy [[konstanta|konstantní]], tzn.
 +
:<big>\(\mathbf{p}=\mbox{konst.}\)</big>
 +
 +
Zákon zachování hybnosti je však obecným [[fyzikální zákon|fyzikálním zákonem]], jehož platnost nezávisí na tom, zda je splněn [[třetí Newtonův pohybový zákon]].
 +
 +
Jestliže je totiž [[vnější síla]] nulová, tzn. <big>\(\mathbf{F} = 0\)</big>, pak podle [[2. Newtonův pohybový zákon|2. Newtonova pohybového zákona]] platí
 +
:<big>\(\mathbf{F} =\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = 0\)</big>
 +
odkud po [[Integrál|integraci]] přímo plyne
 +
:<big>\(\mathbf{p}=\mbox{konst.}\)</big>,
 +
kde ''p'' je celková hybnost.
 +
 +
== Související články ==
 +
* [[Hybnost]]
 +
* [[Zákon zachování energie]]
 +
* [[Zákon zachování momentu hybnosti]]
 +
 +
 +
{{Článek z Wikipedie}}
[[Kategorie:Dynamika]]
[[Kategorie:Dynamika]]
[[Kategorie:Fyzikální zákony]]
[[Kategorie:Fyzikální zákony]]

Aktuální verze z 14. 8. 2022, 14:54

Zákon zachování hybnosti tvrdí, že hybnost izolované soustavy těles se zachovává.

Formulace

Zákon zachování hybnosti lze vyjádřit slovy:

Celková hybnost izolované soustavy těles se nemění.

Odvození

V izolované soustavě je celková hybnost v nějakém časovém okamžiku \(t_0\) určena vektorovým součtem hybností jednotlivých těles, např. v případě dvou těles je to \(\mathbf{p}=\mathbf{p}_1+\mathbf{p}_2\). V takovém případě se po uplynutí času \(\Delta t\) hybnost prvního tělesa vlivem síly \(\mathbf{F}_1\) změní o \(\Delta\mathbf{p}_1\) a hybnost druhého tělesa se působením síly \(\mathbf{F}_2\) změní o \(\Delta\mathbf{p}_2\).

Celková změna hybnosti je tedy podle 2. Newtonova pohybového zákona dána vztahem

\(\Delta\mathbf{p} = \Delta\mathbf{p}_1 + \Delta\mathbf{p}_2 = \mathbf{F}_1\Delta t+\mathbf{F}_2\Delta t = \left(\mathbf{F}_1+\mathbf{F}_2\right)\Delta t\)

Poněvadž se však jedná o síly vzájemného působení (tedy vnitřní síly, což jsou jediné síly působící v izolované soustavě), je podle třetího Newtonova pohybového zákona \(\mathbf{F}_1=-\mathbf{F}_2\) a jejich vektorový součet je nulový, což znamená

\(\Delta\mathbf{p}=0\)

Pokud je změna hybnosti nulová, pak tedy zůstává celková hybnost soustavy konstantní, tzn.

\(\mathbf{p}=\mbox{konst.}\)

Zákon zachování hybnosti je však obecným fyzikálním zákonem, jehož platnost nezávisí na tom, zda je splněn třetí Newtonův pohybový zákon.

Jestliže je totiž vnější síla nulová, tzn. \(\mathbf{F} = 0\), pak podle 2. Newtonova pohybového zákona platí

\(\mathbf{F} =\frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = 0\)

odkud po integraci přímo plyne

\(\mathbf{p}=\mbox{konst.}\),

kde p je celková hybnost.

Související články