V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Vrh šikmý

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (1 revizi)
m (Nahrazení textu „<math>“ textem „<big>\(“)
Řádka 7: Řádka 7:
Proto platí:
Proto platí:
-
:<math>x = x_0 + v_0 t \cos{\alpha}\,</math>,
+
:<big>\(x = x_0 + v_0 t \cos{\alpha}\,</math>,
-
:<math>y = y_0 + v_0 t \sin{\alpha} - \frac{1}{2} g t^2</math>.
+
:<big>\(y = y_0 + v_0 t \sin{\alpha} - \frac{1}{2} g t^2</math>.
-
Obvykle je vhodné položit [[počátek]] [[soustava souřadnic|soustavy souřadnic]] do bodu <math>[x_0,y_0]</math>.
+
Obvykle je vhodné položit [[počátek]] [[soustava souřadnic|soustavy souřadnic]] do bodu <big>\([x_0,y_0]</math>.
Z uvedených [[rovnice|rovnic]] lze určit [[maximum|maximální]] dosaženou [[výška|výšku]]:
Z uvedených [[rovnice|rovnic]] lze určit [[maximum|maximální]] dosaženou [[výška|výšku]]:
-
:<math>y_{max} = y_0 + \frac{1}{2} \frac{v_0^2 \sin^2{\alpha} }{g}</math>
+
:<big>\(y_{max} = y_0 + \frac{1}{2} \frac{v_0^2 \sin^2{\alpha} }{g}</math>
a délku vrhu (tedy [[vzdálenost]], po které těleso klesne do původní výšky), neboli ''[[dostřel]]'':
a délku vrhu (tedy [[vzdálenost]], po které těleso klesne do původní výšky), neboli ''[[dostřel]]'':
-
:<math>d = \frac{v_0^2}{g} \sin{2\alpha}</math>
+
:<big>\(d = \frac{v_0^2}{g} \sin{2\alpha}</math>
Při pohybu v prostředí s nezanedbatelným odporem opisuje těleso asymetrickou [[balistická křivka|balistickou křivku]], u které je délka vrhu kratší než u pohybu při zanedbání odporu vzduchu.
Při pohybu v prostředí s nezanedbatelným odporem opisuje těleso asymetrickou [[balistická křivka|balistickou křivku]], u které je délka vrhu kratší než u pohybu při zanedbání odporu vzduchu.
==Speciální případy==
==Speciální případy==
-
* '''[[Volný pád]]''' - Počáteční rychlost je [[nula|nulová]] a pro rychlost dostáváme vztah <math>v=gt</math>. [[Dráha (fyzika)|Dráha]], kterou těleso urazí od počátku do času <math>t</math> je <math>s=\frac{1}{2}gt^2</math>.
+
* '''[[Volný pád]]''' - Počáteční rychlost je [[nula|nulová]] a pro rychlost dostáváme vztah <big>\(v=gt</math>. [[Dráha (fyzika)|Dráha]], kterou těleso urazí od počátku do času <big>\(t</math> je <big>\(s=\frac{1}{2}gt^2</math>.
-
* '''[[Svislý vrh|Svislý vrh vzhůru]]''' - Celý pohyb probíhá pouze ve směru osy ''y'' ([[elevační úhel]] <math>\alpha=\frac{\pi}{2}</math>). Počáteční rychlost <math>v_0</math> je nenulová (pro nulovou počáteční rychlost by se jednalo o volný pád). Pro rychlost pak dostaneme vztah <math>v=v_0-gt</math>. Vzdálenost (okamžitá výška) tělesa nad bodem, z něhož bylo vrženo, je dána vztahem <math>s=v_0t-\frac{1}{2}gt^2</math>. V nejvyšším bodě výstupu je rychlost [[nula|nulová]]. Odsud získáme dobu výstupu <math>T=\frac{v_0}{g}</math>. Dosazením do vztahu pro dráhu dostaneme po úpravě výšku výstupu <math>h=\frac{v_0^2}{2g}</math>. Z nejvyššího bodu trajektorie padá těleso zpět [[volný pád|volným pádem]] a bodu, z něhož bylo vrženo dosáhne za dobu, která se rovná době výstupu.
+
* '''[[Svislý vrh|Svislý vrh vzhůru]]''' - Celý pohyb probíhá pouze ve směru osy ''y'' ([[elevační úhel]] <big>\(\alpha=\frac{\pi}{2}</math>). Počáteční rychlost <big>\(v_0</math> je nenulová (pro nulovou počáteční rychlost by se jednalo o volný pád). Pro rychlost pak dostaneme vztah <big>\(v=v_0-gt</math>. Vzdálenost (okamžitá výška) tělesa nad bodem, z něhož bylo vrženo, je dána vztahem <big>\(s=v_0t-\frac{1}{2}gt^2</math>. V nejvyšším bodě výstupu je rychlost [[nula|nulová]]. Odsud získáme dobu výstupu <big>\(T=\frac{v_0}{g}</math>. Dosazením do vztahu pro dráhu dostaneme po úpravě výšku výstupu <big>\(h=\frac{v_0^2}{2g}</math>. Z nejvyššího bodu trajektorie padá těleso zpět [[volný pád|volným pádem]] a bodu, z něhož bylo vrženo dosáhne za dobu, která se rovná době výstupu.
-
* '''[[Vodorovný vrh]]''' - Při vodorovném vrhu směřuje počáteční rychlost ve směru osy ''x'' ([[elevační úhel]] <math>\alpha=0</math>). Délka vrhu je [[vzdálenost]] za kterou dojde ke změně y-ové souřadnice o velikost <math>h</math>. Platí pro ni doba letu <math>T=\sqrt{\frac{2h}{g}}</math>. Dosazením doby letu do vztahu pro ''x''-ovou souřadnici získáme délku vrhu <math>d=v_0\sqrt{\frac{2h}{g}}</math>.
+
* '''[[Vodorovný vrh]]''' - Při vodorovném vrhu směřuje počáteční rychlost ve směru osy ''x'' ([[elevační úhel]] <big>\(\alpha=0</math>). Délka vrhu je [[vzdálenost]] za kterou dojde ke změně y-ové souřadnice o velikost <big>\(h</math>. Platí pro ni doba letu <big>\(T=\sqrt{\frac{2h}{g}}</math>. Dosazením doby letu do vztahu pro ''x''-ovou souřadnici získáme délku vrhu <big>\(d=v_0\sqrt{\frac{2h}{g}}</math>.
== Související články ==
== Související články ==

Verze z 14. 8. 2022, 14:50

Vrh šikmý je pohyb tělesa v homogenním gravitačním poli, při kterém počáteční rychlost svírá s horizontem nenulový elevační úhel.

Pokud vrh probíhá ve vakuu, pohybuje se těleso po parabole, ve vzduchu (tzn. s nezanedbatelným odporem vzduchu) po tzv. balistické křivce.

Matematický model

Předpokládejme, že těleso má počáteční rychlost v0 svírající s vodorovným směrem elevační úhel α. Následný pohyb (ve vakuu, resp. při zanedbání odporu vzduchu) se skládá z rovnoměrného přímočarého pohybu touto rychlostí v původním směru (tímto směrem položíme osu x) a z volného pádu (tedy rovnoměrně zrychleného pohybu) ve směru gravitačního zrychlení g, který lze ztotožnit s pohybem ve směru osy y. Ve směru osy z tedy pohyb neprobíhá (trajektorií tedy bude rovinná křivka).

Proto platí:

\(x = x_0 + v_0 t \cos{\alpha}\,</math>,
\(y = y_0 + v_0 t \sin{\alpha} - \frac{1}{2} g t^2</math>.

Obvykle je vhodné položit počátek soustavy souřadnic do bodu \([x_0,y_0]</math>.


Z uvedených rovnic lze určit maximální dosaženou výšku:

\(y_{max} = y_0 + \frac{1}{2} \frac{v_0^2 \sin^2{\alpha} }{g}</math>

a délku vrhu (tedy vzdálenost, po které těleso klesne do původní výšky), neboli dostřel:

\(d = \frac{v_0^2}{g} \sin{2\alpha}</math>

Při pohybu v prostředí s nezanedbatelným odporem opisuje těleso asymetrickou balistickou křivku, u které je délka vrhu kratší než u pohybu při zanedbání odporu vzduchu.

Speciální případy

  • Volný pád - Počáteční rychlost je nulová a pro rychlost dostáváme vztah \(v=gt</math>. Dráha, kterou těleso urazí od počátku do času \(t</math> je \(s=\frac{1}{2}gt^2</math>.
  • Svislý vrh vzhůru - Celý pohyb probíhá pouze ve směru osy y (elevační úhel \(\alpha=\frac{\pi}{2}</math>). Počáteční rychlost \(v_0</math> je nenulová (pro nulovou počáteční rychlost by se jednalo o volný pád). Pro rychlost pak dostaneme vztah \(v=v_0-gt</math>. Vzdálenost (okamžitá výška) tělesa nad bodem, z něhož bylo vrženo, je dána vztahem \(s=v_0t-\frac{1}{2}gt^2</math>. V nejvyšším bodě výstupu je rychlost nulová. Odsud získáme dobu výstupu \(T=\frac{v_0}{g}</math>. Dosazením do vztahu pro dráhu dostaneme po úpravě výšku výstupu \(h=\frac{v_0^2}{2g}</math>. Z nejvyššího bodu trajektorie padá těleso zpět volným pádem a bodu, z něhož bylo vrženo dosáhne za dobu, která se rovná době výstupu.
  • Vodorovný vrh - Při vodorovném vrhu směřuje počáteční rychlost ve směru osy x (elevační úhel \(\alpha=0</math>). Délka vrhu je vzdálenost za kterou dojde ke změně y-ové souřadnice o velikost \(h</math>. Platí pro ni doba letu \(T=\sqrt{\frac{2h}{g}}</math>. Dosazením doby letu do vztahu pro x-ovou souřadnici získáme délku vrhu \(d=v_0\sqrt{\frac{2h}{g}}</math>.

Související články