The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Vzdálenost bodu od přímky

Z Multimediaexpo.cz

Broom icon.png Tento článek potřebuje úpravy. Můžete Multimediaexpo.cz pomoci tím, že ho vylepšíte.
Jak by měly články vypadat, popisují stránky Vzhled a styl a Encyklopedický styl.
Broom icon.png

V rovině (v π 2)


Vzdálenost bodu A[xa, ya] od přímky p v rovině najdeme tak, že nejprve odhalíme souřadnice kolmého průmětu X bodu A na přímku p. Bod X je průsečíkem přímky p a přímky q, která prochází bodem A a je kolmá na p. Proto nejdřív musíme najít přímku q, pro kterou musí platit, že její směrový vektor je normálový vektor přímky p:
Rovnici přímky p upravíme na obecný tvar:

\(ax + by + c = 0\)

Z této rovnice získáme normálový vektor přímky p:

\(\mathbf{n} = (a;b)\)

Tento normálový vektor je směrovým vektorem přímky q, proto normálový vektor přímky q je:

\(\mathbf{u} = (-b;a)\)

Takže obecná rovnice přímky q má následující tvar:

\(-bx + ay + d = 0\)

Proměnnou d získáme dosazením souřadnic bodu A do rovnice:

\(d = bx_a - ay_a\)

Nyní už jen dořešíme soustavu dvou lineárních rovnic, ze které získáme souřadnice bodu X a tyto souřadnice dosadíme spolu se souřadnicemi bodu A do vzorečku pro vzdálenost dvou bodů v rovině:

\(\left| AX \right| = \sqrt{\left( x_a - x_x \right)^2 + \left( y_a - y_x \right)^2}\)

Tímto postupem lze získat obecný vzoreček pro vzdálenost bodu od přímky v rovině: \(v = \frac{\left|ax_a + by_a + c\right|}{\sqrt{a^2 + b^2}}\)

V prostoru (v π 3)


Postup v prostoru je analogický s tím v rovině. Pouze tentokrát nebudeme hledat průsečík přímky p a na ní kolmé přímky q, ale průsečík přímky p a roviny ρ, která je kolmá na p a leží v ní bod A. Rovnici roviny ρ získáme stejným postupem jako předtím, musíme mít pouze na paměti, že přímku v prostoru nelze určit jedinou lineární rovnicí. Vzoreček pro vzdálenost dvou bodů v prostoru je podobný jako v rovině, pouze přibude jeden výraz:

\(\left| AX \right| = \sqrt{\left( x_a - x_x \right)^2 + \left( y_a - y_x \right)^2 + \left( z_a - z_x \right)^2}\)