The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Seznam integrálů logaritmických funkcí

Z Multimediaexpo.cz

Toto je seznam integrálů (primitivních funkcí) logaritmických funkcí (v následujících integrálech se předpokládá, že x > 0).


\(\int\ln cx\,\,\mathrm{d}x = x\ln (cx) - x\)
\(\int (\ln x)^2\; \,\mathrm{d}x = x(\ln x)^2 - 2x\ln x + 2x\)
\(\int (\ln cx)^n\; \,\mathrm{d}x = x(\ln cx)^n - n\int (\ln cx)^{n-1} \,\mathrm{d}x\)
\(\int \frac{\,\mathrm{d}x}{\ln x} = \ln|\ln x| + \ln x + \sum^\infty_{i=2}\frac{(\ln x)^i}{i\cdot i!}\)
\(\int \frac{\,\mathrm{d}x}{(\ln x)^n} = -\frac{x}{(n-1)(\ln x)^{n-1}} + \frac{1}{n-1}\int\frac{\,\mathrm{d}x}{(\ln x)^{n-1}} \qquad\mbox{(pro }n\neq 1\mbox{)}\)
\(\int x^m\ln x\;\,\mathrm{d}x = x^{m+1}\left(\frac{\ln x}{m+1}-\frac{1}{(m+1)^2}\right) \qquad\mbox{(pro }m\neq -1\mbox{)}\)
\(\int x^m (\ln x)^n\; \,\mathrm{d}x = \frac{x^{m+1}(\ln x)^n}{m+1} - \frac{n}{m+1}\int x^m (\ln x)^{n-1} \,\mathrm{d}x \qquad\mbox{(pro }m\neq -1\mbox{)}\)
\(\int \frac{(\ln x)^n\; \,\mathrm{d}x}{x} = \frac{(\ln x)^{n+1}}{n+1} \qquad\mbox{(pro }n\neq -1\mbox{)}\)
\(\int \frac{\ln x\,\,\mathrm{d}x}{x^m} = -\frac{\ln x}{(m-1)x^{m-1}}-\frac{1}{(m-1)^2 x^{m-1}} \qquad\mbox{(pro }m\neq 1\mbox{)}\)
\(\int \frac{(\ln x)^n\; \,\mathrm{d}x}{x^m} = -\frac{(\ln x)^n}{(m-1)x^{m-1}} + \frac{n}{m-1}\int\frac{(\ln x)^{n-1} \,\mathrm{d}x}{x^m} \qquad\mbox{(pro }m\neq 1\mbox{)}\)
\(\int \frac{x^m\; \,\mathrm{d}x}{(\ln x)^n} = -\frac{x^{m+1}}{(n-1)(\ln x)^{n-1}} + \frac{m+1}{n-1}\int\frac{x^m \,\mathrm{d}x}{(\ln x)^{n-1}} \qquad\mbox{(pro }n\neq 1\mbox{)}\)
\(\int \frac{\,\mathrm{d}x}{x\ln x} = \ln|\ln x|\)
\(\int \frac{\,\mathrm{d}x}{x^n\ln x} = \ln|\ln x| + \sum^\infty_{i=1} (-1)^i\frac{(n-1)^i(\ln x)^i}{i\cdot i!}\)
\(\int \frac{\,\mathrm{d}x}{x (\ln x)^n} = -\frac{1}{(n-1)(\ln x)^{n-1}} \qquad\mbox{(pro }n\neq 1\mbox{)}\)
\(\int \sin (\ln x)\;\,\mathrm{d}x = \frac{x}{2}(\sin (\ln x) - \cos (\ln x))\)
\(\int \cos (\ln x)\;\,\mathrm{d}x = \frac{x}{2}(\sin (\ln x) + \cos (\ln x))\)
\(\int e^x (x \ln x - x - \frac{1}{x})\;\,\mathrm{d}x = e^x (x \ln x - x - \ln x) \)

Externí odkazy