The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Eulerova konstanta

Z Multimediaexpo.cz

Broom icon.png Tento článek potřebuje úpravy. Můžete Multimediaexpo.cz pomoci tím, že ho vylepšíte.
Jak by měly články vypadat, popisují stránky Vzhled a styl a Encyklopedický styl.
Broom icon.png


Možná hledáte: Eulerovo číslo

Eulerova konstanta nebo též Eulerova–Mascheroniho konstanta je matematická konstanta používaná v teorii čísel a v analýze. O této konstantě není známo, zda je racionální či iracionální.[1]

Eulerova konstanta je přibližně rovna: 0,57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 … .[2]

Obsah

Definice

Nejsnadneji lze tuto konstantu definovat jako následující limitu:

\(\gamma = \lim_{n \to \infty} \left(1+\frac{1}{2}+\frac{1}{3}+\dots + \frac{1}{n}-\ln n \right)\)

Je obecně známo, že harmonická řada vyskytující se v limitě je řadou divergentní, má tedy nekonečný součet. To že výše uvedená limita je vlastní označuje skutečnost, že pro velká \(n\) můžeme součet harmonické řady aproximovat přirozeným logaritmem, jenž je v nekonečnu taktéž nekonečný.

Geometrická představa

Obsah modré plochy se rovná Eulerově konstantě

Hodnotu konstanty \(\gamma\) si můžeme představit i geometricky. Zobrazíme-li grafy funkci

\(f(x)=\frac{1}{\lfloor x \rfloor},\)

\(g(x)=\frac{1}{x},\)

kde \(\lfloor x \rfloor\) značí (dolní) celou část čísla \(x\), pak obsah plochy mezi těmito dvěma grafy pro x od 1 do nekonečna je právě roven Eulerově konstantě \(\gamma\):

\(\gamma= \int_1^\infty \left( \frac{1}{\lfloor x \rfloor} - \frac{1}{x}\right) dx.\)

Reference

  1. Eulerova konstanta v encyklopedii MathWorld (anglicky)
  2. Eulerova konstanta na OEIS

Externí odkazy