The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Seznam integrálů inverzních trigonometrických funkcí

Z Multimediaexpo.cz

Verze z 27. 4. 2025, 10:52; Sysop (diskuse | příspěvky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Toto je seznam integrálů (primitivních funkcí) pro integrandy obsahující inverzní trigonometrické funkce.

Arkussinus

\(\int \arcsin \frac{x}{c} \ \mathrm{d}x = x \arcsin \frac{x}{c} + \sqrt{c^2 - x^2}\)
\(\int x \arcsin \frac{x}{c} \ \mathrm{d}x = \left( \frac{x^2}{2} - \frac{c^2}{4} \right) \arcsin \frac{x}{c} + \frac{x}{4} \sqrt{c^2 - x^2}\)
\(\int x^2 \arcsin \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \arcsin \frac{x}{c} + \frac{x^2 + 2c^2}{9} \sqrt{c^2 - x^2}\)
\(\int x^n \arcsin x \ \mathrm{d}x = \frac{1}{n + 1} \left( x^{n + 1} \arcsin x + \frac{x^n \sqrt{1 - x^2} - n x^{n - 1} \arcsin x}{n - 1} + n \int x^{n - 2} \arcsin x \ \mathrm{d}x \right)\)

Arkuskosinus

Obsah

\(\int \arccos \frac{x}{c} \ \mathrm{d}x = x \arccos \frac{x}{c} - \sqrt{c^2 - x^2}\)
\(\int x \arccos \frac{x}{c} \ \mathrm{d}x = \left( \frac{x^2}{2} - \frac{c^2}{4} \right) \arccos \frac{x}{c} - \frac{x}{4} \sqrt{c^2 - x^2}\)
\(\int x^2 \arccos \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \arccos \frac{x}{c} - \frac{x^2 + 2c^2}{9} \sqrt{c^2 - x^2}\)

Arkustangens

\(\int \arctan \frac{x}{c} \ \mathrm{d}x = x \arctan \frac{x}{c} - \frac{c}{2} \ln(c^2 + x^2)\)
\(\int x \arctan \frac{x}{c} \ \mathrm{d}x = \frac{ (c^2 + x^2) \arctan \frac{x}{c} - c x}{2}\)
\(\int x^2 \arctan \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \arctan \frac{x}{c} - \frac{c x^2}{6} + \frac{c^3}{6} \ln(c^2 + x^2)\)
\(\int x^n \arctan \frac{x}{c} \ \mathrm{d}x = \frac{x^{n + 1}}{n + 1} \arctan \frac{x}{c} - \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \ \mathrm{d}x, \quad n \neq 1\)

Arkussekans

\(\int \operatorname {arcsec} \frac{x}{c} \ \mathrm{d}x = x \operatorname {arcsec} \frac{x}{c} + \frac{x}{c |x|} \ln \left| x \pm \sqrt{x^2 - 1} \right|\)
\(\int x \operatorname {arcsec} x \ \mathrm{d}x = \frac{1}{2} \left( x^2 \operatorname {arcsec} x - \sqrt{x^2 - 1} \right)\)
\(\int x^n \operatorname {arcsec} x \ \mathrm{d}x = \frac{1}{n + 1} \left( x^{n + 1} \operatorname {arcsec} x - \frac{1}{n} \left[ x^{n - 1} \sqrt{x^2 - 1} + (1 - n) \left( x^{n - 1} \operatorname {arcsec} x + (1 - n) \int x^{n - 2} \operatorname {arcsec} x \ \mathrm{d}x \right) \right] \right)\)

Arkuskotangens

\(\int \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = x \operatorname {arccot} \frac{x}{c} + \frac{c}{2} \ln(c^2 + x^2)\)
\(\int x \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = \frac{c^2 + x^2}{2} \operatorname {arccot} \frac{x}{c} + \frac{c x}{2}\)
\(\int x^2 \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \operatorname {arccot} \frac{x}{c} + \frac{c x^2}{6} - \frac{c^3}{6} \ln(c^2 + x^2)\)
\(\int x^n \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = \frac{x^{n + 1}}{n+1} \operatorname {arccot} \frac{x}{c} + \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \ \mathrm{d}x, \quad n \neq 1\)

Externí odkazy