V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.

Rezonance

Z Multimediaexpo.cz

Verze z 14. 8. 2022, 14:53; Sysop (diskuse | příspěvky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)


Rezonance označuje fyzikální jev, který lze pozorovat při nuceném kmitání, kdy vhodně působící malá budící síla může způsobit velké změny v kmitajícím systému. Rezonance lze pozorovat v případě nucených kmitů, je-li frekvence vnější budící síly shodná s vlastními kmity oscilátoru.

Obsah

Rezonance amplitudy a frekvence

Amplitudové rezonanční křivky pro různá tlumení \(b_1\) a \(b_2\), přičemž \(b_1<b_2\).

Amplituda nucených kmitů nabývá maximální hodnotu pro frekvenci budící síly

\(\Omega_r = \sqrt{\omega_0^2 - 2b^2}\),

kde \(\omega_0\) je frekvence vlastních kmitů oscilátoru a \(b\) je tlumení kmitající soustavy. Při frekvenci \(\Omega_r\) budící síly se hovoří o rezonanci vlastních a nucených kmitů soustavy. Frekvence \(\Omega_r\) se nazývá rezonanční frekvence. Dosazením rezonanční frekvence do výrazu pro aplitudu nucených kmitů, dostaneme pro rezonanční amplitudu vztah

\(A_r = \frac{\frac{S}{m}}{2b\sqrt{\omega_0^2-b^2}} = \frac{S}{2mb\omega}\),

kde \(\omega\) je úhlová frekvence tlumených kmitů, \(m\) je hmotnost kmitajícího tělesa a \(S\) je amplituda budící síly.

Soubor:Rezonance frekvence.png
Frekvenční rezonanční křivky pro různá tlumení \(b_1\) a \(b_2\), přičemž \(b_1<b_2\).

Fázový rozdíl mezi nucenými kmity a budící silou lze při rezonanci vyjádřit vztahem

\(\operatorname{tg}\,\gamma = -\frac{\sqrt{\omega_0^2-2b^2}}{b}\)

Závislost amplitudy nucených kmitů na úhlové frekvenci \(\Omega\) se zobrazuje rezonančními křivkami, nejčastěji amplitudovou rezonanční křivkou a frekvenční rezonanční křivkou. Rezonance se výrazněji výrazněji pouze při slabém tlumení, kdy je však možné součinitel útlumu zanedbat proti vlastní kruhové frekvenci, tzn. \(b\ll\omega_0\). To nám umožňuje zanedbat ve vztahu pro rezonanční frekvenci \(b\) proti \(\omega_0\), je tedy možné položit \(\Omega_r\approx\omega_0\). Pro rezonanční amplitudu nucených kmitů pak dostáváme \(A_r\approx\frac{S}{2mb\omega_0}\). Při slabém tlumení tedy rezonanční amplituda nucených kmitů a energie kmitů dosahují maxima téměř současně. Fázový posuv mezi nucenými kmity a budící silou můžeme v takovém případě položit s dostatečnou přesností roven \(-\frac{\pi}{2}\).

Rezonance mechanické energie

Celková mechanická energie nucených kmitů nemá své maximum při rezonanční frekvenci \(\Omega_r\). K rezonanci mechanické energie dochází při

\(\Omega = \omega_0\)

Rezonance mechanické energie nezávisí na tlumení.

Související články

Externí odkazy