V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Hustota elektrického proudu

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)

Verze z 12. 9. 2011, 10:34

Hustota elektrického proudu (zkráceně proudová hustota) je vektorová fyzikální veličina (má vedle velikosti i směr), popisující lokálního rozložení elektrického proudu. Její směr je stejný jako směr pohybu kladného náboje (v izotropním prostředí je to směr intenzity elektrického pole E).

Obsah

Značení a jednotky

Hustota elektrického proudu má doporučené značky[1] J nebo j.

Hlavní jednotkou v soustavě SI je 1 ampér na metr čtverečný, mezinárodní značka A/m2.

Definice

Velikost hustoty elektrického proudu je definována jako podíl okamžitého elektrického proudu procházejícího daným elementem průřezu vodiče <math>\mathrm{d}S\,</math> a kolmého průmětu tohoto elementu průřezu <math>\mathrm{d}S_{\perp}\,</math>na střední směr <math>\mathbf{n}\,</math> pohybu nosičů nábojů, které proud tvoří (tedy na směr tečny proudové čáry):

<math>\mathbf{j} = \frac {I_{\mathrm{d}S}}{\mathrm{d}S_{\perp}}\mathbf{n}\,</math>, což lze v integrálním tvaru zapsat vztahem pro proud celým průřezem vodiče:
<math> I = \int_S \mathbf{j} \cdot \mathrm{d}\mathbf{S} \,</math>.

V případě, že je proud po průřezu vodivého prostředí rozložený rovnoměrně, lze definiční vztah zjednodušit na skalární vztah:

<math>j = \frac {I}{S_{\perp}}\,</math>, kde <math>S_{\perp}\,</math> je plocha průřezu kolmého na proud.

Použití

Hustota elektrického proudu vystupuje ve vztazích teorie elektromagnetického pole formulovaných v diferenciálním tvaru. Příkladem mohou být

<math> \nabla \cdot \mathbf{j}_{\mathrm{vol}} + \frac{\part \rho_{\mathrm{vol}} }{\part t} =0 </math>,
<math>\mathbf{j} = \sigma \cdot \mathbf{E}</math>,
<math>\nabla \times \mathbf{H}=\mathbf{j}_{\mathrm{vol}}+\frac{\partial \mathbf{D}}{\partial t}</math>.

Zobecnění

Jako u elektrického proudu lze rozdělit i hustotu na hustotu volného proudu a hustotu proudů vázaných (polarizačních a magnetizačních). Lze ji zobecnit i na případy, kdy nedochází k pohybu nositelů náboje, a definovat tzv. hustotu Maxwellova proudu:

<math> \mathbf{j}_{\mathrm{Max}}= \varepsilon_0 \, \frac{\part \mathbf{E}}{\part t}</math>.

Příbuzné veličiny

K popisu lokálního plošného elektrického proudu se zavádí vektorová fyzikální veličina hustota plošného (elektrického) proudu (zkráceně plošná proudová hustota).

Hustota plošného (elektrického) proudu se obvykle značí[pozn. 1] i nebo JS a její jednotkou je 1 ampér na metr (A/m).

Je definována obdobně jako proudová hustota s tím, že elementárním "průřezem" je nyní element délky křivky <math>\mathrm{d}l\,</math>, přes který proud protéká:

<math>\mathbf{i} = \frac {I_{\mathrm{d}l}}{\mathrm{d}l_{\perp}}\mathbf{n}\,</math>, což lze v integrálním tvaru zapsat vztahem pro proud celým délkovým "průřezem" vodiče:
<math> I = \int_l \mathbf{i} \cdot \boldsymbol{\nu} \,\mathrm{d}l \,</math>, kde <math>\boldsymbol{\nu} \,</math> je jednotkový vektor normály ke křivce <math>l\,</math> ležící v ploše vodiče.

Hustota plošného elektrického proudu vystupuje ve vztazích teorie elektromagnetického pole formulovaných v diferenciálním tvaru, které se týkají plošných vodičů nebo plošných rozhraní. Příkladem může být rovnice pro změnu vektoru intenzity magnetického pole na plošném rozhraní protékaném proudem o plošné proudové hustotě <math>\mathbf{i}\,</math> (jednotkový vektor normály <math>\boldsymbol{\nu} \,</math> směřuje z prostředí (2) do prostředí (1):

<math>\boldsymbol{\nu} \times \left( \mathbf{H}_1 - \mathbf{H}_2 \right) = \mathbf{i}</math>.

Poznámky

  1. ČSN ISO 31-5 Veličiny a jednotky: Elektřina a magnetismus, Český normalizační institut, Praha 1994, tuto veličinu neuvádí; uvedené značení vychází z literatury.
  1. ČSN ISO 31-5 Veličiny a jednotky: Elektřina a magnetismus, Český normalizační institut, Praha 1994

Literatura

  • Horák Z., Krupka F.: Fyzika, 3. vydání, SNTL v koedici s ALFA, Praha 1981
  • Feynman R. P., Leighton R. B., Sands M.: Feynmanovy přednášky z fyziky - díl 1/3, 1. české vydání, Fragment, 2000, ISBN 80-7200-405-0.
  • Feynman, R. P., Leighton, R. B., Sands, M.: Feynmanovy přednášky z fyziky - díl 2/3, 1. české vydání, Fragment, 2006, ISBN 80-7200-420-4.
  • Sedlák B., Štoll I.: Elektřina a magnetismus, 1. vydání, Academia, Praha 1993, ISBN 80-200-0172-7
  • Kvasnica J.: Teorie elektromagnetického pole, 1. vydání, Academia, Praha 1985.
  • Votruba V., Muzikář Č.: Theorie elektromagnetického pole, 1. vydání, Nakladatelství Československé akademie věd, Praha 1955.
  • Stratton J. A.: Electromagnetic theory, McGraw-Hill, New York 1949. Český překlad Teorie elektromagnetického pole, SNTL, Praha 1961.