Multimediaexpo.cz je již 18 let na českém internetu !!
Aritmetická posloupnost
Z Multimediaexpo.cz
m (Nahrazení textu „<math>“ textem „<big>\(“) |
m (Nahrazení textu „</math>“ textem „\)</big>“) |
||
Řádka 4: | Řádka 4: | ||
== Vzorce == | == Vzorce == | ||
- | V následujících vzorcích označuje <big>\(a_n</ | + | V následujících vzorcích označuje <big>\(a_n\)</big> ''n''-tý člen aritmetické posloupnosti a ''d'' její diferenci. |
=== Rekurentní zadání === | === Rekurentní zadání === | ||
- | * <big>\(\, a_{n+1} = a_n + d </ | + | * <big>\(\, a_{n+1} = a_n + d \)</big> |
=== Zadání vzorcem pro ''n''-tý člen === | === Zadání vzorcem pro ''n''-tý člen === | ||
- | * <big>\( a_n = a_1 + (n - 1)\cdot d </ | + | * <big>\( a_n = a_1 + (n - 1)\cdot d \)</big> |
=== Vyjádření ''r''-tého členu z ''s''-tého === | === Vyjádření ''r''-tého členu z ''s''-tého === | ||
- | * <big>\( a_r = a_s + (r-s)\cdot d </ | + | * <big>\( a_r = a_s + (r-s)\cdot d \)</big> |
=== Součet prvních ''n'' členů === | === Součet prvních ''n'' členů === | ||
- | * <big>\(s_n = \frac{n \cdot (a_1 + a_n)}{2} = n a_1 + \frac{1}{2}n (n-1)d</ | + | * <big>\(s_n = \frac{n \cdot (a_1 + a_n)}{2} = n a_1 + \frac{1}{2}n (n-1)d\)</big> |
== Příklad == | == Příklad == | ||
- | Například je-li <big>\(a_1 = -5</ | + | Například je-li <big>\(a_1 = -5\)</big> a <big>\(d = 3\)</big>, pak několik prvních členů aritmetické posloupnosti je: -5, -2, 1, 4, 7, 10, 13, … |
== Souvislost s aritmetickým průměrem == | == Souvislost s aritmetickým průměrem == | ||
Řádka 26: | Řádka 26: | ||
Pro aritmetickou posloupnost platí, že každý člen kromě prvního je [[aritmetický průměr|aritmetickým průměrem]] obou sousedních členů: | Pro aritmetickou posloupnost platí, že každý člen kromě prvního je [[aritmetický průměr|aritmetickým průměrem]] obou sousedních členů: | ||
- | <big>\(\ a_n = \frac {a_{n-1}+ a_{n+1}}{2}</ | + | <big>\(\ a_n = \frac {a_{n-1}+ a_{n+1}}{2}\)</big> |
Obráceně pokud tato vlastnost platí pro všechny členy posloupnosti počínaje druhým, tak se jedná o aritmetickou posloupnost (důkaz např. matematickou indukcí). | Obráceně pokud tato vlastnost platí pro všechny členy posloupnosti počínaje druhým, tak se jedná o aritmetickou posloupnost (důkaz např. matematickou indukcí). | ||
Řádka 32: | Řádka 32: | ||
== Souvislost s geometrickou posloupností == | == Souvislost s geometrickou posloupností == | ||
- | Je-li posloupnost <big>\(a_n</ | + | Je-li posloupnost <big>\(a_n\)</big> aritmetická, tak je posloupnost <big>\(b^{a_n}\)</big> geometrická (pro libovolný základ b≥0). |
- | Je-li posloupnost <big>\(g_n</ | + | Je-li posloupnost <big>\(g_n\)</big> geometrická s kladnými členy, tak je posloupnost <big>\(\quad \log_b g_n\)</big> aritmetická (pro libovolný základ b>0, b≠1). |
== Aritmetická řada == | == Aritmetická řada == | ||
Řádka 40: | Řádka 40: | ||
Součet aritmetické řady je dán jako [[limita posloupnosti|limita]] posloupnosti [[#Součet prvních \'\'n\'\' členů|''n''-tých částečných součtů]]. Platí tedy | Součet aritmetické řady je dán jako [[limita posloupnosti|limita]] posloupnosti [[#Součet prvních \'\'n\'\' členů|''n''-tých částečných součtů]]. Platí tedy | ||
- | :<big>\(\lim_{n \to \infty} s_n = \pm \infty</ | + | :<big>\(\lim_{n \to \infty} s_n = \pm \infty\)</big>, |
- | kde kladné znaménko platí pro <big>\(d>0</ | + | kde kladné znaménko platí pro <big>\(d>0\)</big> anebo <big>\(d=0, a_1>0\)</big> a záporné pro <big>\(d<0\)</big> anebo <big>\(d=0, a_1<0\)</big>. |
- | Pro <big>\(a_1=d=0</ | + | Pro <big>\(a_1=d=0\)</big> je součet samozřejmě |
- | :<big>\(\lim_{n \to \infty} s_n = 0.</ | + | :<big>\(\lim_{n \to \infty} s_n = 0.\)</big> |
== Související články == | == Související články == |
Aktuální verze z 14. 8. 2022, 14:51
Aritmetická posloupnost je druh matematické posloupnosti, kde je stálý rozdíl mezi sousedními členy. Tento rozdíl mezi libovolným členem kromě prvního a předcházejícím členem se obvykle značí d a nazývá diference.
Aritmetickou posloupnost lze chápat jako lineární funkci definovanou v oboru přirozených čísel a proto i pro svou jednoduchost je jedním z nejdůležitějších typů posloupností.
Obsah |
Vzorce
V následujících vzorcích označuje \(a_n\) n-tý člen aritmetické posloupnosti a d její diferenci.
Rekurentní zadání
- \(\, a_{n+1} = a_n + d \)
Zadání vzorcem pro n-tý člen
- \( a_n = a_1 + (n - 1)\cdot d \)
Vyjádření r-tého členu z s-tého
- \( a_r = a_s + (r-s)\cdot d \)
Součet prvních n členů
- \(s_n = \frac{n \cdot (a_1 + a_n)}{2} = n a_1 + \frac{1}{2}n (n-1)d\)
Příklad
Například je-li \(a_1 = -5\) a \(d = 3\), pak několik prvních členů aritmetické posloupnosti je: -5, -2, 1, 4, 7, 10, 13, …
Souvislost s aritmetickým průměrem
Pro aritmetickou posloupnost platí, že každý člen kromě prvního je aritmetickým průměrem obou sousedních členů:
\(\ a_n = \frac {a_{n-1}+ a_{n+1}}{2}\)
Obráceně pokud tato vlastnost platí pro všechny členy posloupnosti počínaje druhým, tak se jedná o aritmetickou posloupnost (důkaz např. matematickou indukcí).
Souvislost s geometrickou posloupností
Je-li posloupnost \(a_n\) aritmetická, tak je posloupnost \(b^{a_n}\) geometrická (pro libovolný základ b≥0).
Je-li posloupnost \(g_n\) geometrická s kladnými členy, tak je posloupnost \(\quad \log_b g_n\) aritmetická (pro libovolný základ b>0, b≠1).
Aritmetická řada
Součet členů aritmetické posloupnosti je označován jako aritmetická řada. Není však moc zajímavý, protože kromě případu posloupnosti samých nul je řada divergentní.
Součet aritmetické řady je dán jako limita posloupnosti n-tých částečných součtů. Platí tedy
- \(\lim_{n \to \infty} s_n = \pm \infty\),
kde kladné znaménko platí pro \(d>0\) anebo \(d=0, a_1>0\) a záporné pro \(d<0\) anebo \(d=0, a_1<0\).
Pro \(a_1=d=0\) je součet samozřejmě
- \(\lim_{n \to \infty} s_n = 0.\)
Související články
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |