Multimediaexpo.cz je již 18 let na českém internetu !!
Stupeň vrcholu
Z Multimediaexpo.cz
m (1 revizi) |
(+ Nový článek) |
||
Řádka 1: | Řádka 1: | ||
- | + | V [[Teorie grafů|teorii grafů]] se pojmem '''stupeň vrcholu''' (někdy též ''valence'' vrcholu) označuje počet [[hrana grafu|hran]], které do daného [[vrchol grafu|vrcholu]] zasahují. Stupeň vrcholu ''u'' se značí ''deg(u)''. Přesnější definice závisí na tom, zda je graf [[Orientovaný graf|orientovaný]] nebo neorientovaný. | |
+ | == Neorientovaný graf == | ||
+ | [[Soubor:UndirectedDegrees (Loop).png|240px|thumb|Neorientovaný graf s 6 vrcholy označenými jejich stupněm]] | ||
+ | |||
+ | :<math>deg(u) = \left | \{e\in\mathit{E} \mid u\in e\;\}\right |</math> | ||
+ | |||
+ | U neorientovaného grafu je stupeň vrcholu počet hran, které do daného vrcholu zasahují. Koncové body [[Hrana (graf)|smyčky]] tvoří tentýž vrchol, proto se tato hrana počítá dvakrát. | ||
+ | |||
+ | == Orientovaný graf == | ||
+ | [[Soubor:Directed graph.png|thumb|240px|Orientovaný graf s 4 vrcholy a 5 hranami]] | ||
+ | |||
+ | U orientovaného grafu se rozlišuje tzv. ''vstupní'' a ''výstupní'' stupeň vrcholu: | ||
+ | * vstupní stupeň | ||
+ | :<math>deg^+(u) = \left | \{e\in\mathit{E} \mid \exists v\in\mathit{V}\;:e = (v, u)\;\}\right |</math> | ||
+ | * výstupní stupeň | ||
+ | :<math>deg^-(u) = \left | \{e\in\mathit{E} \mid \exists v\in\mathit{V}\;:e = (u, v)\;\}\right |</math> | ||
+ | |||
+ | U orientovaného grafu jsou hrany orientované, proto se vstupující hrana a vystupující hrany počítají zvlášť. Celkový stupeň uzlu je pak roven součtu vstupujících a vystupujících hran. | ||
+ | |||
+ | Stupně vrcholů z obrázku vpravo: | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | ! Vrchol!! vstupní stupeň !! výstupní stupeň | ||
+ | |- | ||
+ | | 1 || 0 || 2 | ||
+ | |- | ||
+ | | 2 || 2 || 0 | ||
+ | |- | ||
+ | | 3 || 2 || 2 | ||
+ | |- | ||
+ | | 4 || 1 || 1 | ||
+ | |} | ||
+ | |||
+ | == Princip sudosti == | ||
+ | ''Tvrzení'': V neorientovaném grafu ''G = (V, E)'' platí <math>\sum_{v\in\mathit{V}}deg(v) = 2\left |E\right |</math> | ||
+ | |||
+ | ''Důkaz'': Je to pouze vyjádření faktu, že každou hranu započítáváme dvakrát - jednou ve vrcholu, kde začíná, podruhé ve vrcholu, kde končí. | ||
+ | |||
+ | ''Poznámka'': Pro orientované grafy změníme levou stranu rovnosti v tvrzení na <math>\sum_{v\in\mathit{V}}\left (deg^+(v) + deg^-(v)\right )</math> | ||
+ | |||
+ | ''Důsledek'': Počet vrcholů s lichým stupněm je sudé číslo. Neboli „počet lidí, kteří si na večírku potřásli ruce s lichým počtem účastníků, je sudé číslo“. | ||
+ | |||
+ | == Související články == | ||
+ | * [[Skóre grafu]] | ||
+ | |||
+ | == Externí odkazy == | ||
+ | * [https://en.wikipedia.org/wiki/Glossary_of_graph_theory Seznam grafových pojmů na anglické Wikipedii (anglicky)] | ||
+ | |||
+ | |||
+ | {{Článek z Wikipedie}} | ||
[[Kategorie:Grafové pojmy]] | [[Kategorie:Grafové pojmy]] |
Verze z 8. 10. 2015, 13:15
V teorii grafů se pojmem stupeň vrcholu (někdy též valence vrcholu) označuje počet hran, které do daného vrcholu zasahují. Stupeň vrcholu u se značí deg(u). Přesnější definice závisí na tom, zda je graf orientovaný nebo neorientovaný.
Obsah |
Neorientovaný graf
- <math>deg(u) = \left | \{e\in\mathit{E} \mid u\in e\;\}\right |</math>
U neorientovaného grafu je stupeň vrcholu počet hran, které do daného vrcholu zasahují. Koncové body smyčky tvoří tentýž vrchol, proto se tato hrana počítá dvakrát.
Orientovaný graf
U orientovaného grafu se rozlišuje tzv. vstupní a výstupní stupeň vrcholu:
- vstupní stupeň
- <math>deg^+(u) = \left | \{e\in\mathit{E} \mid \exists v\in\mathit{V}\;:e = (v, u)\;\}\right |</math>
- výstupní stupeň
- <math>deg^-(u) = \left | \{e\in\mathit{E} \mid \exists v\in\mathit{V}\;:e = (u, v)\;\}\right |</math>
U orientovaného grafu jsou hrany orientované, proto se vstupující hrana a vystupující hrany počítají zvlášť. Celkový stupeň uzlu je pak roven součtu vstupujících a vystupujících hran.
Stupně vrcholů z obrázku vpravo:
Vrchol | vstupní stupeň | výstupní stupeň |
---|---|---|
1 | 0 | 2 |
2 | 2 | 0 |
3 | 2 | 2 |
4 | 1 | 1 |
Princip sudosti
Tvrzení: V neorientovaném grafu G = (V, E) platí <math>\sum_{v\in\mathit{V}}deg(v) = 2\left |E\right |</math>
Důkaz: Je to pouze vyjádření faktu, že každou hranu započítáváme dvakrát - jednou ve vrcholu, kde začíná, podruhé ve vrcholu, kde končí.
Poznámka: Pro orientované grafy změníme levou stranu rovnosti v tvrzení na <math>\sum_{v\in\mathit{V}}\left (deg^+(v) + deg^-(v)\right )</math>
Důsledek: Počet vrcholů s lichým stupněm je sudé číslo. Neboli „počet lidí, kteří si na večírku potřásli ruce s lichým počtem účastníků, je sudé číslo“.
Související články
Externí odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |