V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.

Nerovnosti mezi průměry

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Nový článek)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
(Nejsou zobrazeny 3 mezilehlé verze.)
Řádka 1: Řádka 1:
-
{{Wikipedia-cs|Nerovnosti mezi průměry|700}}
+
'''[[Nerovnost]]i mezi průměry''' v [[matematika|matematice]] vyjadřují nejčastěji vztah mezi [[kvadratický průměr|kvadratickým]], [[aritmetický průměr|aritmetickým]], [[geometrický průměr|geometrickým]] a [[harmonický průměr|harmonickým průměrem]] nějaké skupiny čísel.
 +
Existují ještě další průměry – zobecněný mocninný (např. odmocninový, [[Kubický průměr|kubický]]), [[Heronův průměr|Heronův]], aritmeticko-geometrický, [[Logaritmický průměr|logaritmický]], [[Harmonicko-kvadratický průměr|harmonicko-kvadratický]], [[Kontraharmonický průměr|kontraharmonický]] – které lze do nerovností zapsat. Jejich užití je však (kromě Heronova průměru) spíše sporadické.
 +
 +
==Vzorec==
 +
Označíme-li [[kvadratický průměr]] daných '''[[Kladné a záporné číslo|kladných čísel]]''' jako <big>\(K\)</big>, [[aritmetický průměr]] <big>\(A\)</big>, [[geometrický průměr]] <big>\(G\)</big> a [[harmonický průměr]] <big>\(H\)</big>, pak platí:
 +
 +
<big>\(K \geq A \geq G \geq H\)</big>
 +
 +
[[Rovnost (matematika)|Rovnost]] navíc nastává tehdy a jen tehdy, pokud jsou všechna průměrovaná [[číslo|čísla]] stejná.
 +
 +
Například pro <big>\(a_1=1\)</big>, <big>\(a_2=2\)</big> je:
 +
 +
<big>\(K=\sqrt{2,5} \dot= 1,58 \geq A=1,5 \geq G=\sqrt{2} \dot=1,41 \geq H=1,\overline{3}\)</big>
 +
 +
Nejdůležitější z těchto [[nerovnost]]í je nerovnost aritmetického a geometrického průměru, nazývaná též [[AG nerovnost]].
 +
 +
==Související články==
 +
*[[Nerovnost aritmetického a geometrického průměru]]
 +
*[[Kvadratický průměr]]
 +
*[[Aritmetický průměr]]
 +
*[[Geometrický průměr]]
 +
*[[Harmonický průměr]]
 +
 +
==Externí odkazy==
 +
*[http://mks.mff.cuni.cz/library/library.php?categ=9&supcats= Nerovnosti] na stránkách matematického korespondenčního semináře MFF UK
 +
 +
 +
{{Článek z Wikipedie}}
 +
[[Kategorie:Nerovnosti]]
[[Kategorie:Statistika]]
[[Kategorie:Statistika]]

Aktuální verze z 14. 8. 2022, 14:52

Nerovnosti mezi průměry v matematice vyjadřují nejčastěji vztah mezi kvadratickým, aritmetickým, geometrickým a harmonickým průměrem nějaké skupiny čísel.

Existují ještě další průměry – zobecněný mocninný (např. odmocninový, kubický), Heronův, aritmeticko-geometrický, logaritmický, harmonicko-kvadratický, kontraharmonický – které lze do nerovností zapsat. Jejich užití je však (kromě Heronova průměru) spíše sporadické.

Vzorec

Označíme-li kvadratický průměr daných kladných čísel jako \(K\), aritmetický průměr \(A\), geometrický průměr \(G\) a harmonický průměr \(H\), pak platí:

\(K \geq A \geq G \geq H\)

Rovnost navíc nastává tehdy a jen tehdy, pokud jsou všechna průměrovaná čísla stejná.

Například pro \(a_1=1\), \(a_2=2\) je:

\(K=\sqrt{2,5} \dot= 1,58 \geq A=1,5 \geq G=\sqrt{2} \dot=1,41 \geq H=1,\overline{3}\)

Nejdůležitější z těchto nerovností je nerovnost aritmetického a geometrického průměru, nazývaná též AG nerovnost.

Související články

Externí odkazy

  • Nerovnosti na stránkách matematického korespondenčního semináře MFF UK