The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).
Dovolená : 23. prosinec 2025 — 29. prosinec 2025
Holidays : December 23, 2025 — December 29, 2025
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).
Dovolená : 23. prosinec 2025 — 29. prosinec 2025
Holidays : December 23, 2025 — December 29, 2025
Seznam integrálů inverzních trigonometrických funkcí
Z Multimediaexpo.cz
(Rozdíly mezi verzemi)
m (1 revizi) |
(+ Aktualizace) |
||
| Řádka 1: | Řádka 1: | ||
| - | + | Toto je seznam [[integrál]]ů (primitivních funkcí) pro integrandy obsahující [[Cyklometrická funkce|inverzní trigonometrické funkce]]. | |
| + | == [[Arkussinus]] == | ||
| + | :<big>\(\int \arcsin \frac{x}{c} \ \mathrm{d}x = x \arcsin \frac{x}{c} + \sqrt{c^2 - x^2}\)</big> | ||
| + | |||
| + | :<big>\(\int x \arcsin \frac{x}{c} \ \mathrm{d}x = \left( \frac{x^2}{2} - \frac{c^2}{4} \right) \arcsin \frac{x}{c} + \frac{x}{4} \sqrt{c^2 - x^2}\)</big> | ||
| + | |||
| + | :<big>\(\int x^2 \arcsin \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \arcsin \frac{x}{c} + \frac{x^2 + 2c^2}{9} \sqrt{c^2 - x^2}\)</big> | ||
| + | |||
| + | :<big>\(\int x^n \arcsin x \ \mathrm{d}x = \frac{1}{n + 1} \left( x^{n + 1} \arcsin x + \frac{x^n \sqrt{1 - x^2} - n x^{n - 1} \arcsin x}{n - 1} + n \int x^{n - 2} \arcsin x \ \mathrm{d}x \right)\)</big> | ||
| + | |||
| + | == [[Arkuskosinus]] == | ||
| + | {{RIGHTTOC}} | ||
| + | :<big>\(\int \arccos \frac{x}{c} \ \mathrm{d}x = x \arccos \frac{x}{c} - \sqrt{c^2 - x^2}\)</big> | ||
| + | |||
| + | :<big>\(\int x \arccos \frac{x}{c} \ \mathrm{d}x = \left( \frac{x^2}{2} - \frac{c^2}{4} \right) \arccos \frac{x}{c} - \frac{x}{4} \sqrt{c^2 - x^2}\)</big> | ||
| + | |||
| + | :<big>\(\int x^2 \arccos \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \arccos \frac{x}{c} - \frac{x^2 + 2c^2}{9} \sqrt{c^2 - x^2}\)</big> | ||
| + | |||
| + | == [[Arkustangens]] == | ||
| + | :<big>\(\int \arctan \frac{x}{c} \ \mathrm{d}x = x \arctan \frac{x}{c} - \frac{c}{2} \ln(c^2 + x^2)\)</big> | ||
| + | |||
| + | :<big>\(\int x \arctan \frac{x}{c} \ \mathrm{d}x = \frac{ (c^2 + x^2) \arctan \frac{x}{c} - c x}{2}\)</big> | ||
| + | |||
| + | :<big>\(\int x^2 \arctan \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \arctan \frac{x}{c} - \frac{c x^2}{6} + \frac{c^3}{6} \ln(c^2 + x^2)\)</big> | ||
| + | |||
| + | :<big>\(\int x^n \arctan \frac{x}{c} \ \mathrm{d}x = \frac{x^{n + 1}}{n + 1} \arctan \frac{x}{c} - \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \ \mathrm{d}x, \quad n \neq 1\)</big> | ||
| + | |||
| + | == [[Arkussekans]] == | ||
| + | :<big>\(\int \operatorname {arcsec} \frac{x}{c} \ \mathrm{d}x = x \operatorname {arcsec} \frac{x}{c} + \frac{x}{c |x|} \ln \left| x \pm \sqrt{x^2 - 1} \right|\)</big> | ||
| + | |||
| + | :<big>\(\int x \operatorname {arcsec} x \ \mathrm{d}x = \frac{1}{2} \left( x^2 \operatorname {arcsec} x - \sqrt{x^2 - 1} \right)\)</big> | ||
| + | |||
| + | :<big>\(\int x^n \operatorname {arcsec} x \ \mathrm{d}x = \frac{1}{n + 1} \left( x^{n + 1} \operatorname {arcsec} x - \frac{1}{n} \left[ x^{n - 1} \sqrt{x^2 - 1} + (1 - n) \left( x^{n - 1} \operatorname {arcsec} x + (1 - n) \int x^{n - 2} \operatorname {arcsec} x \ \mathrm{d}x \right) \right] \right)\)</big> | ||
| + | |||
| + | == [[Arkuskotangens]] == | ||
| + | :<big>\(\int \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = x \operatorname {arccot} \frac{x}{c} + \frac{c}{2} \ln(c^2 + x^2)\)</big> | ||
| + | |||
| + | :<big>\(\int x \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = \frac{c^2 + x^2}{2} \operatorname {arccot} \frac{x}{c} + \frac{c x}{2}\)</big> | ||
| + | |||
| + | :<big>\(\int x^2 \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \operatorname {arccot} \frac{x}{c} + \frac{c x^2}{6} - \frac{c^3}{6} \ln(c^2 + x^2)\)</big> | ||
| + | |||
| + | :<big>\(\int x^n \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = \frac{x^{n + 1}}{n+1} \operatorname {arccot} \frac{x}{c} + \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \ \mathrm{d}x, \quad n \neq 1\)</big> | ||
| + | |||
| + | == Externí odkazy == | ||
| + | |||
| + | {{Článek z Wikipedie}} | ||
[[Kategorie:Integrální počet]] | [[Kategorie:Integrální počet]] | ||
Aktuální verze z 27. 4. 2025, 10:52
Toto je seznam integrálů (primitivních funkcí) pro integrandy obsahující inverzní trigonometrické funkce.
Arkussinus
- \(\int \arcsin \frac{x}{c} \ \mathrm{d}x = x \arcsin \frac{x}{c} + \sqrt{c^2 - x^2}\)
- \(\int x \arcsin \frac{x}{c} \ \mathrm{d}x = \left( \frac{x^2}{2} - \frac{c^2}{4} \right) \arcsin \frac{x}{c} + \frac{x}{4} \sqrt{c^2 - x^2}\)
- \(\int x^2 \arcsin \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \arcsin \frac{x}{c} + \frac{x^2 + 2c^2}{9} \sqrt{c^2 - x^2}\)
- \(\int x^n \arcsin x \ \mathrm{d}x = \frac{1}{n + 1} \left( x^{n + 1} \arcsin x + \frac{x^n \sqrt{1 - x^2} - n x^{n - 1} \arcsin x}{n - 1} + n \int x^{n - 2} \arcsin x \ \mathrm{d}x \right)\)
Arkuskosinus
- \(\int \arccos \frac{x}{c} \ \mathrm{d}x = x \arccos \frac{x}{c} - \sqrt{c^2 - x^2}\)
- \(\int x \arccos \frac{x}{c} \ \mathrm{d}x = \left( \frac{x^2}{2} - \frac{c^2}{4} \right) \arccos \frac{x}{c} - \frac{x}{4} \sqrt{c^2 - x^2}\)
- \(\int x^2 \arccos \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \arccos \frac{x}{c} - \frac{x^2 + 2c^2}{9} \sqrt{c^2 - x^2}\)
Arkustangens
- \(\int \arctan \frac{x}{c} \ \mathrm{d}x = x \arctan \frac{x}{c} - \frac{c}{2} \ln(c^2 + x^2)\)
- \(\int x \arctan \frac{x}{c} \ \mathrm{d}x = \frac{ (c^2 + x^2) \arctan \frac{x}{c} - c x}{2}\)
- \(\int x^2 \arctan \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \arctan \frac{x}{c} - \frac{c x^2}{6} + \frac{c^3}{6} \ln(c^2 + x^2)\)
- \(\int x^n \arctan \frac{x}{c} \ \mathrm{d}x = \frac{x^{n + 1}}{n + 1} \arctan \frac{x}{c} - \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \ \mathrm{d}x, \quad n \neq 1\)
Arkussekans
- \(\int \operatorname {arcsec} \frac{x}{c} \ \mathrm{d}x = x \operatorname {arcsec} \frac{x}{c} + \frac{x}{c |x|} \ln \left| x \pm \sqrt{x^2 - 1} \right|\)
- \(\int x \operatorname {arcsec} x \ \mathrm{d}x = \frac{1}{2} \left( x^2 \operatorname {arcsec} x - \sqrt{x^2 - 1} \right)\)
- \(\int x^n \operatorname {arcsec} x \ \mathrm{d}x = \frac{1}{n + 1} \left( x^{n + 1} \operatorname {arcsec} x - \frac{1}{n} \left[ x^{n - 1} \sqrt{x^2 - 1} + (1 - n) \left( x^{n - 1} \operatorname {arcsec} x + (1 - n) \int x^{n - 2} \operatorname {arcsec} x \ \mathrm{d}x \right) \right] \right)\)
Arkuskotangens
- \(\int \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = x \operatorname {arccot} \frac{x}{c} + \frac{c}{2} \ln(c^2 + x^2)\)
- \(\int x \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = \frac{c^2 + x^2}{2} \operatorname {arccot} \frac{x}{c} + \frac{c x}{2}\)
- \(\int x^2 \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = \frac{x^3}{3} \operatorname {arccot} \frac{x}{c} + \frac{c x^2}{6} - \frac{c^3}{6} \ln(c^2 + x^2)\)
- \(\int x^n \operatorname {arccot} \frac{x}{c} \ \mathrm{d}x = \frac{x^{n + 1}}{n+1} \operatorname {arccot} \frac{x}{c} + \frac{c}{n + 1} \int \frac{x^{n + 1}}{c^2 + x^2} \ \mathrm{d}x, \quad n \neq 1\)
Externí odkazy
| Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
|---|
| Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |
