The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Obor integrity

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (1 revizi)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
(Nejsou zobrazeny 2 mezilehlé verze.)
Řádka 1: Řádka 1:
-
{{Wikipedia-cs|Obor integrity|700}}
+
'''Obor integrity''' je [[Komutativita|komutativní]] [[Okruh (algebra)|okruh]] '''''R''''' s [[Jednotkový prvek|jednotkovým prvkem]], pro který navíc platí [[axiom]]
 +
:<big>\(\forall a \in R, a \neq 0 \quad \forall b \in R, b \neq 0 \qquad a \cdot b \neq 0\)</big>.
 +
Oborem integrity je tedy každý komutativní okruh s jednotkovým prvkem, ve kterém nejsou netriviální [[dělitel nuly|dělitelé nuly]].
 +
 +
== Příklady ==
 +
* Každé komutativní [[Těleso (algebra)|těleso]] je oborem integrity.
 +
* Množina [[celé číslo|celých čísel]] <big>\(\mathbb{Z}\)</big> s obvyklým sčítáním a násobením je oborem integrity, není však tělesem.
 +
 +
== Související články ==
 +
* [[Okruh (algebra)|Okruh]]
 +
* [[Těleso (algebra)|Těleso]]
 +
 +
 +
{{Článek z Wikipedie}}
[[Kategorie:Algebraické struktury]]
[[Kategorie:Algebraické struktury]]

Aktuální verze z 14. 8. 2022, 14:52

Obor integrity je komutativní okruh R s jednotkovým prvkem, pro který navíc platí axiom

\(\forall a \in R, a \neq 0 \quad \forall b \in R, b \neq 0 \qquad a \cdot b \neq 0\).

Oborem integrity je tedy každý komutativní okruh s jednotkovým prvkem, ve kterém nejsou netriviální dělitelé nuly.

Příklady

  • Každé komutativní těleso je oborem integrity.
  • Množina celých čísel \(\mathbb{Z}\) s obvyklým sčítáním a násobením je oborem integrity, není však tělesem.

Související články