The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Tangentová věta

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Masivní vylepšení)
m (Nahrazení textu „<math>“ textem „<big>\(“)
Řádka 3: Řádka 3:
Pro každý trojúhelník ABC s&nbsp;vnitřními [[úhel|úhly]] α, β, γ a stranami ''a'', ''b'', ''c'' platí:
Pro každý trojúhelník ABC s&nbsp;vnitřními [[úhel|úhly]] α, β, γ a stranami ''a'', ''b'', ''c'' platí:
-
:<math>\frac{a-b}{a+b}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{tg}\, \frac{\alpha +\beta }{2}}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{cotg}\, \frac{\gamma }{2}}</math>
+
:<big>\(\frac{a-b}{a+b}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{tg}\, \frac{\alpha +\beta }{2}}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{cotg}\, \frac{\gamma }{2}}</math>
-
:<math>\frac{b-c}{b+c}=\frac{\mathrm{tg}\, \frac{\beta -\gamma }{2}}{\mathrm{tg}\, \frac{\beta +\gamma }{2}}=\frac{\mathrm{tg}\, \frac{\beta -\gamma }{2}}{\mathrm{cotg}\, \frac{\alpha }{2}}</math>
+
:<big>\(\frac{b-c}{b+c}=\frac{\mathrm{tg}\, \frac{\beta -\gamma }{2}}{\mathrm{tg}\, \frac{\beta +\gamma }{2}}=\frac{\mathrm{tg}\, \frac{\beta -\gamma }{2}}{\mathrm{cotg}\, \frac{\alpha }{2}}</math>
-
:<math>\frac{c-a}{c+a}=\frac{\mathrm{tg}\, \frac{\gamma -\alpha }{2}}{\mathrm{tg}\, \frac{\gamma +\alpha }{2}}=\frac{\mathrm{tg}\, \frac{\gamma -\alpha }{2}}{\mathrm{cotg}\, \frac{\beta }{2}}</math>
+
:<big>\(\frac{c-a}{c+a}=\frac{\mathrm{tg}\, \frac{\gamma -\alpha }{2}}{\mathrm{tg}\, \frac{\gamma +\alpha }{2}}=\frac{\mathrm{tg}\, \frac{\gamma -\alpha }{2}}{\mathrm{cotg}\, \frac{\beta }{2}}</math>
== Související články ==
== Související články ==

Verze z 14. 8. 2022, 14:50

Trojúhelník ABC

trigonometrii je tangentová věta tvrzení o rovinných trojúhelnících.

Pro každý trojúhelník ABC s vnitřními úhly α, β, γ a stranami a, b, c platí:

\(\frac{a-b}{a+b}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{tg}\, \frac{\alpha +\beta }{2}}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{cotg}\, \frac{\gamma }{2}}</math>
\(\frac{b-c}{b+c}=\frac{\mathrm{tg}\, \frac{\beta -\gamma }{2}}{\mathrm{tg}\, \frac{\beta +\gamma }{2}}=\frac{\mathrm{tg}\, \frac{\beta -\gamma }{2}}{\mathrm{cotg}\, \frac{\alpha }{2}}</math>
\(\frac{c-a}{c+a}=\frac{\mathrm{tg}\, \frac{\gamma -\alpha }{2}}{\mathrm{tg}\, \frac{\gamma +\alpha }{2}}=\frac{\mathrm{tg}\, \frac{\gamma -\alpha }{2}}{\mathrm{cotg}\, \frac{\beta }{2}}</math>

Související články